Team, Visitors, External Collaborators
Overall Objectives
Research Program
Application Domains
Highlights of the Year
New Software and Platforms
New Results
Bilateral Contracts and Grants with Industry
Partnerships and Cooperations
Dissemination
Bibliography
XML PDF e-pub
PDF e-Pub


Bibliography

Major publications by the team in recent years
  • 1S. Dellacherie, J. Jung, P. Omnes, P.-A. Raviart.
    Construction of modified Godunov type schemes accurate at any Mach number for the compressible Euler system, in: Mathematical Models and Methods in Applied Sciences, November 2016. [ DOI : 10.1142/S0218202516500603 ]
    https://hal.archives-ouvertes.fr/hal-00776629
  • 2J.-L. Florenciano, P. Bruel.
    LES fluid-solid coupled calculations for the assessment of heat transfer coefficient correlations over multi-perforated walls, in: Aerospace Science and Technology, 2016, vol. 53, 13 p. [ DOI : 10.1016/j.ast.2016.03.004 ]
    https://hal.inria.fr/hal-01353952
  • 3E. Franquet, V. Perrier.
    Runge-Kutta discontinuous Galerkin method for the approximation of Baer and Nunziato type multiphase models, in: Journal of Computational Physics, February 2012, vol. 231, no 11, pp. 4096-4141. [ DOI : 10.1016/j.jcp.2012.02.002 ]
    https://hal.inria.fr/hal-00684427
  • 4C. Friess, R. Manceau, T. Gatski.
    Toward an equivalence criterion for Hybrid RANS/LES methods, in: Computers and Fluids, 2015, vol. 122, pp. 233-246. [ DOI : 10.1016/j.compfluid.2015.08.010 ]
  • 5J.-M. Hérard, J. Jung.
    An interface condition to compute compressible flows in variable cross section ducts, in: Comptes Rendus Mathématique, February 2016. [ DOI : 10.1016/j.crma.2015.10.026 ]
    https://hal.inria.fr/hal-01233251
  • 6R. Manceau.
    Recent progress in the development of the Elliptic Blending Reynolds-stress model, in: Int. J. Heat Fluid Fl., 2015, vol. 51, pp. 195-220.
    http://dx.doi.org/10.1016/j.ijheatfluidflow.2014.09.002
  • 7Y. Moguen, S. Delmas, V. Perrier, P. Bruel, E. Dick.
    Godunov-type schemes with an inertia term for unsteady full Mach number range flow calculations, in: Journal of Computational Physics, January 2015, vol. 281, 35 p. [ DOI : 10.1016/j.jcp.2014.10.041 ]
    https://hal.inria.fr/hal-01096422
Publications of the year

Articles in International Peer-Reviewed Journals

  • 8V. Boutrouche, E. Franquet, S. Serra, R. Manceau.
    Influence of the turbulence model for channel flows with strong transverse temperature gradients, in: International Journal of Heat and Fluid Flow, April 2018, vol. 70, pp. 79-103.
    https://hal.inria.fr/hal-01944199
  • 9P. Bruel, S. Delmas, J. Jung, V. Perrier.
    A low Mach correction able to deal with low Mach acoustics, in: Journal of Computational Physics, February 2019, vol. 378, pp. 723-759. [ DOI : 10.1016/j.jcp.2018.11.020 ]
    https://hal.inria.fr/hal-01953424

Invited Conferences

  • 10R. Manceau.
    Modélisation des transferts thermiques turbulents (conférence plénière), in: 26e congrès français de thermique, Pau, France, May 2018.
    https://hal.inria.fr/hal-01944227
  • 11R. Manceau.
    Progress in Hybrid Temporal LES (plenary lecture), in: 6th Symposium on Hybrid RANS-LES Methods, Strasbourg, France, Progress in Hybrid RANS-LES Modelling. Papers contributed to the 6th Symp. Hybrid RANS-LES Methods, 26-28 September 29016, Strasbourg, France. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, September 2018, vol. 137.
    https://hal.inria.fr/hal-01391899

International Conferences with Proceedings

  • 12A. G. Filippini, S. De Brye, V. Perrier, F. Marche, M. Ricchiuto, D. Lannes, P. Bonneton.
    UHAINA : A parallel high performance unstructured near-shore wave model, in: Journées Nationales Génie Côtier - Génie Civil, La Rochelle, France, Editions Paralia, May 2018. [ DOI : 10.5150/jngcgc.2018.006 ]
    https://hal.inria.fr/hal-01824108
  • 13M. Lorini, C. Dobrzynski, V. Perrier, M. Ricchiuto.
    A Discontinuous Galerkin Immersed Boundary Method Using Unstructured Anisotropic Mesh Adaptation and Penalization Techniques, in: 13th World Congress in Computational Mechanics, New York, United States, July 2018.
    https://hal.inria.fr/hal-01824109
  • 14M. Lorini, C. Dobrzynski, V. Perrier, M. Ricchiuto.
    Preliminary results of a Discontinuous Galerkin immersed boundary method combining penalisation and anisotropic adaptaion, in: 6th European Conference on Computational Mechanics (ECCM 6)/7th European Conference on Computational Fluid Dynamics (ECFD 7), Glasgow, United Kingdom, June 2018.
    https://hal.inria.fr/hal-01824099
  • 15G. Mangeon, S. Benhamadouche, J.-F. Wald, R. Manceau.
    Modelling of the dissipation rate of the temperature variance, in: ETMM12 - 12th International ERCOFTAC Symposium on Engineering Turbulence Modelling and Measurements, Montpellier, France, September 2018.
    https://hal.inria.fr/hal-01944242
  • 16G. Mangeon, S. Benhamadouche, J.-F. Wald, R. Manceau.
    Unifying the near-wall treatment of the turbulent heat fluxes for all kinds of temperature boundary conditions with the Elliptic Blending approach, in: THMT-18 - 9th International Symposium on Turbulence, Heat and Mass Transfer, Rio De Janeiro, Brazil, July 2018.
    https://hal.inria.fr/hal-01944249

Conferences without Proceedings

  • 17A. H. Afailal, J. Galpin, A. Velghe, R. Manceau.
    A Hybrid Temporal RANS-LES Method for internal combustion engine applications, in: Large-Eddy Simulation for Internal Combustion Engines, Rueil-Malmaison, France, December 2018.
    https://hal.inria.fr/hal-01970768
  • 18P. Bruel.
    An efficient pressure-based methodology for low Mach flow simulations, in: CAIA 2018: 5º Congreso Argentino de Ingeniería Aeronáutica, Córdoba, Argentina, November 2018.
    https://hal.archives-ouvertes.fr/hal-01953245
  • 19J. Jung, V. Perrier.
    A low Mach correction able to deal with low Mach acoustic and free of checkerboard modes, in: ECCM-ECFD Conferences 2018 - 6th European Conference on Computational Mechanics - 7th European Conference on Computational Fluid Dynamics, Glasgow, United Kingdom, June 2018.
    https://hal.inria.fr/hal-01953376
  • 20V. Perrier, J. Jung.
    A low Mach correction able to deal with low Mach acoustic and free of checkerboard modes, in: CANUM 2018 - 44e Congrès National d'Analyse Numérique, Cap d'Agde, France, May 2018, vol. 228, pp. 2525 - 2615.
    https://hal.inria.fr/hal-01960122
  • 21V. Perrier, A. Mazaheri.
    Symmetrizable first order formulation of Navier-Stokes equations and numerical results with the discontinuous Galerkin method, in: 6th European Conference on Computational Mechanics (ECCM 6)/7th European Conference on Computational Fluid Dynamics (ECFD 7), Glasgow, France, June 2018.
    https://hal.inria.fr/hal-01953594

Scientific Popularization

Other Publications

  • 31V. Duffal, B. De Laage De Meux, R. Manceau.
    Hybrid RANS/LES modelling of unsteady turbulent loads in hydraulic pumps, May 2018, Code_Saturne user meeting, Poster.
    https://hal.inria.fr/hal-01944333
  • 32J. Jung.
    A low Mach correction able to deal with low Mach acoustic and free of checkerboard modes, May 2018, Séminaire, Groupe de travail de l’ENS Rennes, Rennes, France.
    https://hal.inria.fr/hal-01953411
  • 33G. Mangeon, S. Benhamadouche, R. Manceau, J.-F. Wald.
    Modeling of the dissipation rate of the temperature variance, May 2018, Code_Saturne user meeting, Poster.
    https://hal.inria.fr/hal-01944358
References in notes
  • 34D. N. Arnold.
    An interior penalty finite element method with discontinuous elements, in: SIAM journal on numerical analysis, 1982, vol. 19, no 4, pp. 742–760.
  • 35D. N. Arnold, F. Brezzi, B. Cockburn, L. D. Marini.
    Unified analysis of discontinuous Galerkin methods for elliptic problems, in: SIAM journal on numerical analysis, 2002, vol. 39, no 5, pp. 1749–1779.
  • 36C. Augonnet, S. Thibault, R. Namyst, P.-A. Wacrenier.
    StarPU: A Unified Platform for Task Scheduling on Heterogeneous Multicore Architectures, in: Concurr. Comput. : Pract. Exper., February 2011, vol. 23, no 2, pp. 187–198.
    http://dx.doi.org/10.1002/cpe.1631
  • 37F. Bassi, L. Botti, A. Colombo, D. D. Pietro, P. Tesini.
    On the flexibility of agglomeration based physical space discontinuous Galerkin discretizations, in: Journal of Computational Physics, 2012, vol. 231, no 1, pp. 45 - 65. [ DOI : 10.1016/j.jcp.2011.08.018 ]
    http://www.sciencedirect.com/science/article/pii/S0021999111005055
  • 38F. Bassi, A. Crivellini, S. Rebay, M. Savini.
    Discontinuous Galerkin solution of the Reynolds-averaged Navier-Stokes and k-omega turbulence model equations, in: Computers & Fluids, 2005, vol. 34, no 4-5, pp. 507-540.
  • 39F. Bassi, S. Rebay.
    A high-order accurate discontinuous finite element method for the numerical solution of the compressible Navier-Stokes equations, in: J. Comput. Phys., 1997, vol. 131, no 2, pp. 267–279.
    http://dx.doi.org/10.1006/jcph.1996.5572
  • 40F. Bassi, S. Rebay, G. Mariotti, S. Pedinotti, M. Savini.
    A high-order accurate discontinuous finite element method for inviscid and viscous turbomachinery flows, in: Proceedings of the 2nd European Conference on Turbomachinery Fluid Dynamics and Thermodynamics, Technologisch Instituut, Antwerpen, Belgium, 1997, pp. 99–109.
  • 41B. Cockburn, S. Hou, C.-W. Shu.
    The Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws. IV. The multidimensional case, in: Math. Comp., 1990, vol. 54, no 190, pp. 545–581.
    http://dx.doi.org/10.2307/2008501
  • 42B. Cockburn, S. Y. Lin, C.-W. Shu.
    TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws. III. One-dimensional systems, in: J. Comput. Phys., 1989, vol. 84, no 1, pp. 90–113.
  • 43B. Cockburn, C.-W. Shu.
    TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws. II. General framework, in: Math. Comp., 1989, vol. 52, no 186, pp. 411–435.
    http://dx.doi.org/10.2307/2008474
  • 44B. Cockburn, C.-W. Shu.
    The Runge-Kutta local projection P1-discontinuous-Galerkin finite element method for scalar conservation laws, in: RAIRO Modél. Math. Anal. Numér., 1991, vol. 25, no 3, pp. 337–361.
  • 45B. Cockburn, C.-W. Shu.
    The Runge-Kutta discontinuous Galerkin method for conservation laws. V. Multidimensional systems, in: J. Comput. Phys., 1998, vol. 141, no 2, pp. 199–224.
    http://dx.doi.org/10.1006/jcph.1998.5892
  • 46S. S. Colis.
    Discontinuous Galerkin methods for turbulence simulation, in: Proceedings of the Summer Program, Center for Turbulence Research, 2002.
  • 47M. Essadki, J. Jung, A. Larat, M. Pelletier, V. Perrier.
    A task-driven implementation of a simple numerical solver for hyperbolic conservation laws, in: ESAIM: Proceedings and Surveys, January 2017, vol. 63, pp. 228-247. [ DOI : 10.1051/proc/201863228 ]
    https://hal.archives-ouvertes.fr/hal-01439322
  • 48M. Feistauer, V. Kučera.
    On a robust discontinuous Galerkin technique for the solution of compressible flow, in: J. Comput. Phys., 2007, vol. 224, no 1, pp. 208–221.
    http://dx.doi.org/10.1016/j.jcp.2007.01.035
  • 49U. Frisch.
    Turbulence: The Legacy of AN Kolmogorov, Cambridge University Press, 1995.
  • 50M. Giles.
    Non-Reflecting Boundary Conditions for Euler Equation Calculation, in: The American Institute of Aeronautics and Astronautics Journal, 1990, vol. 42, no 12.
  • 51R. Hartmann, P. Houston.
    Symmetric interior penalty DG methods for the compressible Navier-Stokes equations. I. Method formulation, in: Int. J. Numer. Anal. Model., 2006, vol. 3, no 1, pp. 1–20.
  • 52A. Jameson, M. Fatica.
    Using Computational Fluid Dynamics for Aerodynamics, in: National Research Council Workshop on "The Future of Supercomputing", 2003.
  • 53C. Johnson, A. Szepessy, P. Hansbo.
    On the convergence of shock-capturing streamline diffusion finite element methods for hyperbolic conservation laws, in: Math. Comp., 1990, vol. 54, no 189, pp. 107–129.
    http://dx.doi.org/10.2307/2008684
  • 54A. Klöckner, T. Warburton, J. Bridge, J. Hesthaven.
    Nodal discontinuous Galerkin methods on graphics processors, in: Journal of Computational Physics, 2009, vol. 228, no 21, pp. 7863 - 7882. [ DOI : 10.1016/j.jcp.2009.06.041 ]
    http://www.sciencedirect.com/science/article/pii/S0021999109003647
  • 55D. Knoll, D. Keyes.
    Jacobian-free Newton-Krylov methods: a survey of approaches and applications, in: Journal of Computational Physics, 2004, vol. 193, no 2, pp. 357 - 397. [ DOI : 10.1016/j.jcp.2003.08.010 ]
    http://www.sciencedirect.com/science/article/pii/S0021999103004340
  • 56P. Lesaint, P.-A. Raviart.
    On a finite element method for solving the neutron transport equation, in: Mathematical aspects of finite elements in partial differential equations (Proc. Sympos., Math. Res. Center, Univ. Wisconsin, Madison, Wis., 1974), Math. Res. Center, Univ. of Wisconsin-Madison, Academic Press, New York, 1974, pp. 89–123. Publication No. 33.
  • 57F. Lörcher, G. Gassner, C.-D. Munz.
    An explicit discontinuous Galerkin scheme with local time-stepping for general unsteady diffusion equations, in: J. Comput. Phys., 2008, vol. 227, no 11, pp. 5649–5670.
    http://dx.doi.org/10.1016/j.jcp.2008.02.015
  • 58A. C. Muresan, Y. Notay.
    Analysis of Aggregation-Based Multigrid, in: SIAM J. Sci. Comput., March 2008, vol. 30, no 2, pp. 1082–1103.
    http://dx.doi.org/10.1137/060678397
  • 59T. Poinsot, S. Lele.
    Boundary conditions for direct simulations of compressible viscous flows, in: Journal of Computational Physics, 1992, vol. 101, pp. 104-129.
  • 60W. Reed, T. Hill.
    Triangular mesh methods for the neutron transport equation, Los Alamos Scientific Laboratory, 1973, no LA-UR-73-479.
  • 61H. Sutter.
    The free lunch is over: A fundamental turn toward concurrency in software, in: Dr. Dobb's Journal, 2005.
  • 62K. W. Thompson.
    Time-dependent boundary conditions for hyperbolic systems, {II}, in: Journal of Computational Physics, 1990, vol. 89, no 2, pp. 439 - 461. [ DOI : 10.1016/0021-9991(90)90152-Q ]
    http://www.sciencedirect.com/science/article/pii/002199919090152Q
  • 63I. Toulopoulos, J. A. Ekaterinaris.
    Artificial boundary conditions for the numerical solution of the Euler equations by the discontinuous galerkin method, in: Journal of Computational Physics, 2011, vol. 230, no 15, pp. 5974 - 5995. [ DOI : 10.1016/j.jcp.2011.04.008 ]
    http://www.sciencedirect.com/science/article/pii/S0021999111002324
  • 64P. Wesseling.
    An introduction to multigrid methods, Pure and applied mathematics, J. Wiley, Chichester, New York, 1992.
    http://opac.inria.fr/record=b1088946
  • 65I. Yavneh.
    Why Multigrid Methods Are So Efficient, in: Computing in Science and Engg., November 2006, vol. 8, no 6, pp. 12–22.
    http://dx.doi.org/10.1109/MCSE.2006.125
  • 66J. van der Vegt, S. Rhebergen.
    hp-Multigrid as Smoother algorithm for higher order discontinuous Galerkin discretizations of advection dominated flows: Part I. Multilevel analysis, in: Journal of Computational Physics, 2012, vol. 231, no 22, pp. 7537 - 7563. [ DOI : 10.1016/j.jcp.2012.05.038 ]
    http://www.sciencedirect.com/science/article/pii/S0021999112003129