Team, Visitors, External Collaborators
Overall Objectives
Research Program
Highlights of the Year
New Software and Platforms
New Results
Bilateral Contracts and Grants with Industry
Partnerships and Cooperations
Dissemination
Bibliography
XML PDF e-pub
PDF e-Pub


Bibliography

Publications of the year

Articles in International Peer-Reviewed Journals

  • 1J. Amalberti, X. Antoine, P. Burnard.
    Timescale monitoring of vesuvian eruption using numerical modeling of the diffusion equation, in: Mathematical Geosciences, 2018, vol. 50, no 4, pp. 417-429. [ DOI : 10.1007/s11004-018-9732-3 ]
    https://hal.archives-ouvertes.fr/hal-01929057
  • 2S. Ammar, J.-C. Vivalda, M. Massaoud.
    Genericity of the strong observability for sampled, in: SIAM Journal on Control and Optimization, 2018, vol. 56, no 2, 28 p. [ DOI : 10.1137/16M1084961 ]
    https://hal.inria.fr/hal-01630461
  • 3X. Antoine, F. Hou, E. Lorin.
    Asymptotic estimates of the convergence of classical Schwarz waveform relaxation domain decomposition methods for two-dimensional stationary quantum waves, in: ESAIM: Mathematical Modelling and Numerical Analysis, 2018, vol. 52, no 4, pp. 1569-1596. [ DOI : 10.1051/m2an/2017048 ]
    https://hal.archives-ouvertes.fr/hal-01431866
  • 4X. Antoine, E. Lorin.
    Multilevel preconditioning techniques for Schwarz waveform relaxation domain decomposition methods for real-and imaginary-time nonlinear Schrödinger equations, in: Applied Mathematics and Computation, 2018, vol. 336, no 1, pp. 403-417.
    https://hal.archives-ouvertes.fr/hal-01266021
  • 5X. Antoine, Q. Tang, J. Zhang.
    On the numerical solution and dynamical laws of nonlinear fractional Schrödinger/Gross-Pitaevskii equations, in: International Journal of Computer Mathematics, 2018, vol. 95, no 6-7, pp. 1423-1443. [ DOI : 10.1080/00207160.2018.1437911 ]
    https://hal.archives-ouvertes.fr/hal-01649721
  • 6X. Antoine, Q. Tang, Y. Zhang.
    A Preconditioned Conjugated Gradient Method for Computing Ground States of Rotating Dipolar Bose-Einstein Condensates via Kernel Truncation Method for Dipole-Dipole Interaction Evaluation, in: Communications in Computational Physics, 2018, vol. 24, no 4, pp. 966-988.
    https://hal.archives-ouvertes.fr/hal-01649724
  • 7L. Baudouin, E. Crépeau, J. Valein.
    Two approaches for the stabilization of nonlinear KdV equation with boundary time-delay feedback, in: IEEE Transactions on Automatic Control, 2018, https://arxiv.org/abs/1711.09696.
    https://hal.laas.fr/hal-01643321
  • 8N. Burq, D. Dos Santos Ferreira, K. Krupchyk.
    From semiclassical Strichartz estimates to uniform Lp resolvent estimates on compact manifolds, in: International Mathematics Research Notices, 2018, vol. 2018, no 16, pp. 5178-5218, https://arxiv.org/abs/1507.02307. [ DOI : 10.1093/imrn/rnx042 ]
    https://hal.archives-ouvertes.fr/hal-01251701
  • 9B. H. Haak, D. Maity, T. Takahashi, M. Tucsnak.
    Mathematical analysis of the motion of a rigid body in a compressible Navier-Stokes-Fourier fluid, in: Mathematical News / Mathematische Nachrichten, 2018, https://arxiv.org/abs/1710.08245.
    https://hal.archives-ouvertes.fr/hal-01619647
  • 10S. Ji, Y. Yang, G. Pang, X. Antoine.
    Accurate artificial boundary conditions for the semi-discretized linear Schrödinger and heat equations on rectangular domains, in: Computer Physics Communications, 2018, vol. 222, pp. 84-93. [ DOI : 10.1016/j.cpc.2017.09.019 ]
    https://hal.archives-ouvertes.fr/hal-01649707
  • 11T. Khajah, X. Antoine, S. P. Bordas.
    B-spline FEM for time-harmonic acoustic scattering and propagation, in: Journal of Theoretical and Computational Acoustics, 2018, vol. 26, no 4, 1850059 p. [ DOI : 10.1142/S2591728518500597 ]
    https://hal.archives-ouvertes.fr/hal-01377485
  • 12S. Micu, T. Takahashi.
    Local controllability to stationary trajectories of a one-dimensional simplified model arising in turbulence, in: Journal of Differential Equations, 2018.
    https://hal.archives-ouvertes.fr/hal-01572317
  • 13A. Munnier, K. Ramdani.
    Calderón cavities inverse problem as a shape-from-moments problem, in: Quarterly of Applied Mathematics, 2018, vol. 76, pp. 407-435. [ DOI : 10.1090/qam/1505 ]
    https://hal.inria.fr/hal-01503425
  • 14B. Obando, T. Takahashi.
    Existence of weak solutions for a Bingham fluid-rigid body system, in: Annales de l'Institut Henri Poincaré (C) Non Linear Analysis, 2018.
    https://hal.archives-ouvertes.fr/hal-01942426
  • 15K. Ramdani, J. Valein, J.-C. Vivalda.
    Adaptive observer for age-structured population with spatial diffusion, in: North-Western European Journal of Mathematics, 2018, vol. 4, pp. 39-58.
    https://hal.inria.fr/hal-01469488
  • 16J.-F. Scheid, J. Sokolowski.
    Shape optimization for a fluid-elasticity system, in: Pure and Applied Functional Analysis, 2018, vol. 3, no 1, pp. 193-217.
    https://hal.archives-ouvertes.fr/hal-01449478
  • 17J. Zhang, D. Li, X. Antoine.
    Efficient numerical computation of time-fractional nonlinear Schrödinger equations in unbounded domain, in: Communications in Computational Physics, 2019, vol. 50, no 4, pp. 417-429.
    https://hal.archives-ouvertes.fr/hal-01422725

International Conferences with Proceedings

  • 18M. Ghattassi, J.-C. Vivalda, T. M. Laleg-Kirati.
    State observer design for Direct Contact Membrane Distillation Parabolic systems, in: ACC 2018 - American Control Conference, Milwaukee, United States, IEEE, June 2018. [ DOI : 10.23919/ACC.2018.8431155 ]
    https://hal.inria.fr/hal-01876673

Other Publications

References in notes
  • 36C. Alves, A. L. Silvestre, T. Takahashi, M. Tucsnak.
    Solving inverse source problems using observability. Applications to the Euler-Bernoulli plate equation, in: SIAM J. Control Optim., 2009, vol. 48, no 3, pp. 1632-1659.
  • 37X. Antoine, K. Ramdani, B. Thierry.
    Wide Frequency Band Numerical Approaches for Multiple Scattering Problems by Disks, in: Journal of Algorithms & Computational Technologies, 2012, vol. 6, no 2, pp. 241–259.
  • 38X. Antoine, C. Geuzaine, K. Ramdani.
    Computational Methods for Multiple Scattering at High Frequency with Applications to Periodic Structures Calculations, in: Wave Propagation in Periodic Media, Progress in Computational Physics, Vol. 1, Bentham, 2010, pp. 73-107.
  • 39D. Auroux, J. Blum.
    A nudging-based data assimilation method : the Back and Forth Nudging (BFN) algorithm, in: Nonlin. Proc. Geophys., 2008, vol. 15, no 305-319.
  • 40M. I. Belishev, S. A. Ivanov.
    Reconstruction of the parameters of a system of connected beams from dynamic boundary measurements, in: Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI), 2005, vol. 324, no Mat. Vopr. Teor. Rasprostr. Voln. 34, pp. 20–42, 262.
  • 41M. Bellassoued, D. Dos Santos Ferreira.
    Stability estimates for the anisotropic wave equation from the Dirichlet-to-Neumann map, in: Inverse Probl. Imaging, 2011, vol. 5, no 4, pp. 745–773.
    http://dx.doi.org/10.3934/ipi.2011.5.745
  • 42M. Bellassoued, D. D. S. Ferreira.
    Stable determination of coefficients in the dynamical anisotropic Schrödinger equation from the Dirichlet-to-Neumann map, in: Inverse Problems, 2010, vol. 26, no 12, 125010, 30 p.
    http://dx.doi.org/10.1088/0266-5611/26/12/125010
  • 43Y. Boubendir, X. Antoine, C. Geuzaine.
    A Quasi-Optimal Non-Overlapping Domain Decomposition Algorithm for the Helmholtz Equation, in: Journal of Computational Physics, 2012, vol. 2, no 231, pp. 262-280.
  • 44M. Boulakia.
    Existence of weak solutions for an interaction problem between an elastic structure and a compressible viscous fluid, in: J. Math. Pures Appl. (9), 2005, vol. 84, no 11, pp. 1515–1554.
    http://dx.doi.org/10.1016/j.matpur.2005.08.004
  • 45M. Boulakia, S. Guerrero.
    Regular solutions of a problem coupling a compressible fluid and an elastic structure, in: J. Math. Pures Appl. (9), 2010, vol. 94, no 4, pp. 341–365.
    http://dx.doi.org/10.1016/j.matpur.2010.04.002
  • 46M. Boulakia, A. Osses.
    Local null controllability of a two-dimensional fluid-structure interaction problem, in: ESAIM Control Optim. Calc. Var., 2008, vol. 14, no 1, pp. 1–42.
    http://dx.doi.org/10.1051/cocv:2007031
  • 47M. Boulakia, E. Schwindt, T. Takahashi.
    Existence of strong solutions for the motion of an elastic structure in an incompressible viscous fluid, in: Interfaces Free Bound., 2012, vol. 14, no 3, pp. 273–306.
    http://dx.doi.org/10.4171/IFB/282
  • 48G. Bruckner, M. Yamamoto.
    Determination of point wave sources by pointwise observations: stability and reconstruction, in: Inverse Problems, 2000, vol. 16, no 3, pp. 723–748.
  • 49A. Chambolle, B. Desjardins, M. J. Esteban, C. Grandmont.
    Existence of weak solutions for the unsteady interaction of a viscous fluid with an elastic plate, in: J. Math. Fluid Mech., 2005, vol. 7, no 3, pp. 368–404.
    http://dx.doi.org/10.1007/s00021-004-0121-y
  • 50C. Choi, G. Nakamura, K. Shirota.
    Variational approach for identifying a coefficient of the wave equation, in: Cubo, 2007, vol. 9, no 2, pp. 81–101.
  • 51C. Conca, J. San Martín, M. Tucsnak.
    Existence of solutions for the equations modelling the motion of a rigid body in a viscous fluid, in: Comm. Partial Differential Equations, 2000, vol. 25, no 5-6, pp. 1019–1042.
    http://dx.doi.org/10.1080/03605300008821540
  • 52D. Coutand, S. Shkoller.
    Motion of an elastic solid inside an incompressible viscous fluid, in: Arch. Ration. Mech. Anal., 2005, vol. 176, no 1, pp. 25–102.
    http://dx.doi.org/10.1007/s00205-004-0340-7
  • 53D. Coutand, S. Shkoller.
    The interaction between quasilinear elastodynamics and the Navier-Stokes equations, in: Arch. Ration. Mech. Anal., 2006, vol. 179, no 3, pp. 303–352.
    http://dx.doi.org/10.1007/s00205-005-0385-2
  • 54B. Desjardins, M. J. Esteban.
    On weak solutions for fluid-rigid structure interaction: compressible and incompressible models, in: Comm. Partial Differential Equations, 2000, vol. 25, no 7-8, pp. 1399–1413.
    http://dx.doi.org/10.1080/03605300008821553
  • 55B. Desjardins, M. J. Esteban.
    Existence of weak solutions for the motion of rigid bodies in a viscous fluid, in: Arch. Ration. Mech. Anal., 1999, vol. 146, no 1, pp. 59–71.
    http://dx.doi.org/10.1007/s002050050136
  • 56B. Desjardins, M. J. Esteban, C. Grandmont, P. Le Tallec.
    Weak solutions for a fluid-elastic structure interaction model, in: Rev. Mat. Complut., 2001, vol. 14, no 2, pp. 523–538.
  • 57A. El Badia, T. Ha-Duong.
    Determination of point wave sources by boundary measurements, in: Inverse Problems, 2001, vol. 17, no 4, pp. 1127–1139.
  • 58M. El Bouajaji, X. Antoine, C. Geuzaine.
    Approximate Local Magnetic-to-Electric Surface Operators for Time-Harmonic Maxwell's Equations, in: Journal of Computational Physics, 2015, vol. 15, no 279, pp. 241-260.
  • 59M. El Bouajaji, B. Thierry, X. Antoine, C. Geuzaine.
    A quasi-optimal domain decomposition algorithm for the time-harmonic Maxwell's equations, in: Journal of Computational Physics, 2015, vol. 294, no 1, pp. 38-57. [ DOI : 10.1016/j.jcp.2015.03.041 ]
    https://hal.archives-ouvertes.fr/hal-01095566
  • 60E. Feireisl.
    On the motion of rigid bodies in a viscous compressible fluid, in: Arch. Ration. Mech. Anal., 2003, vol. 167, no 4, pp. 281–308.
    http://dx.doi.org/10.1007/s00205-002-0242-5
  • 61E. Feireisl.
    On the motion of rigid bodies in a viscous incompressible fluid, in: J. Evol. Equ., 2003, vol. 3, no 3, pp. 419–441, Dedicated to Philippe Bénilan.
    http://dx.doi.org/10.1007/s00028-003-0110-1
  • 62E. Feireisl, M. Hillairet, Š. Nečasová.
    On the motion of several rigid bodies in an incompressible non-Newtonian fluid, in: Nonlinearity, 2008, vol. 21, no 6, pp. 1349–1366.
    http://dx.doi.org/10.1088/0951-7715/21/6/012
  • 63E. Fridman.
    Observers and initial state recovering for a class of hyperbolic systems via Lyapunov method, in: Automatica, 2013, vol. 49, no 7, pp. 2250 - 2260.
  • 64G. P. Galdi, A. L. Silvestre.
    On the motion of a rigid body in a Navier-Stokes liquid under the action of a time-periodic force, in: Indiana Univ. Math. J., 2009, vol. 58, no 6, pp. 2805–2842.
    http://dx.doi.org/10.1512/iumj.2009.58.3758
  • 65O. Glass, F. Sueur.
    The movement of a solid in an incompressible perfect fluid as a geodesic flow, in: Proc. Amer. Math. Soc., 2012, vol. 140, no 6, pp. 2155–2168.
    http://dx.doi.org/10.1090/S0002-9939-2011-11219-X
  • 66C. Grandmont, Y. Maday.
    Existence for an unsteady fluid-structure interaction problem, in: M2AN Math. Model. Numer. Anal., 2000, vol. 34, no 3, pp. 609–636.
    http://dx.doi.org/10.1051/m2an:2000159
  • 67G. Haine.
    Recovering the observable part of the initial data of an infinite-dimensional linear system with skew-adjoint generator, in: Mathematics of Control, Signals, and Systems, 2014, vol. 26, no 3, pp. 435-462.
  • 68G. Haine, K. Ramdani.
    Reconstructing initial data using observers: error analysis of the semi-discrete and fully discrete approximations, in: Numer. Math., 2012, vol. 120, no 2, pp. 307-343.
  • 69J. Houot, A. Munnier.
    On the motion and collisions of rigid bodies in an ideal fluid, in: Asymptot. Anal., 2008, vol. 56, no 3-4, pp. 125–158.
  • 70O. Y. Imanuvilov, T. Takahashi.
    Exact controllability of a fluid-rigid body system, in: J. Math. Pures Appl. (9), 2007, vol. 87, no 4, pp. 408–437.
    http://dx.doi.org/10.1016/j.matpur.2007.01.005
  • 71V. Isakov.
    Inverse problems for partial differential equations, Applied Mathematical Sciences, Second, Springer, New York, 2006, vol. 127.
  • 72N. V. Judakov.
    The solvability of the problem of the motion of a rigid body in a viscous incompressible fluid, in: Dinamika Splošn. Sredy, 1974, no Vyp. 18 Dinamika Zidkost. so Svobod. Granicami, pp. 249–253, 255.
  • 73B. Kaltenbacher, A. Neubauer, O. Scherzer.
    Iterative regularization methods for nonlinear ill-posed problems, Radon Series on Computational and Applied Mathematics, Walter de Gruyter GmbH & Co. KG, Berlin, 2008, vol. 6.
  • 74G. Legendre, T. Takahashi.
    Convergence of a Lagrange-Galerkin method for a fluid-rigid body system in ALE formulation, in: M2AN Math. Model. Numer. Anal., 2008, vol. 42, no 4, pp. 609–644.
    http://dx.doi.org/10.1051/m2an:2008020
  • 75J. Lequeurre.
    Existence of strong solutions to a fluid-structure system, in: SIAM J. Math. Anal., 2011, vol. 43, no 1, pp. 389–410.
    http://dx.doi.org/10.1137/10078983X
  • 76D. Luenberger.
    Observing the state of a linear system, in: IEEE Trans. Mil. Electron., 1964, vol. MIL-8, pp. 74-80.
  • 77P. Moireau, D. Chapelle, P. Le Tallec.
    Joint state and parameter estimation for distributed mechanical systems, in: Computer Methods in Applied Mechanics and Engineering, 2008, vol. 197, pp. 659–677.
  • 78A. Munnier, B. Pinçon.
    Locomotion of articulated bodies in an ideal fluid: 2D model with buoyancy, circulation and collisions, in: Math. Models Methods Appl. Sci., 2010, vol. 20, no 10, pp. 1899–1940.
    http://dx.doi.org/10.1142/S0218202510004829
  • 79A. Munnier, E. Zuazua.
    Large time behavior for a simplified N-dimensional model of fluid-solid interaction, in: Comm. Partial Differential Equations, 2005, vol. 30, no 1-3, pp. 377–417.
    http://dx.doi.org/10.1081/PDE-200050080
  • 80J. O'Reilly.
    Observers for linear systems, Mathematics in Science and Engineering, Academic Press Inc., Orlando, FL, 1983, vol. 170.
  • 81J. Ortega, L. Rosier, T. Takahashi.
    On the motion of a rigid body immersed in a bidimensional incompressible perfect fluid, in: Ann. Inst. H. Poincaré Anal. Non Linéaire, 2007, vol. 24, no 1, pp. 139–165.
    http://dx.doi.org/10.1016/j.anihpc.2005.12.004
  • 82K. Ramdani, M. Tucsnak, G. Weiss.
    Recovering the initial state of an infinite-dimensional system using observers, in: Automatica, 2010, vol. 46, no 10, pp. 1616-1625.
  • 83J.-P. Raymond.
    Feedback stabilization of a fluid-structure model, in: SIAM J. Control Optim., 2010, vol. 48, no 8, pp. 5398–5443.
    http://dx.doi.org/10.1137/080744761
  • 84J. San Martín, J.-F. Scheid, L. Smaranda.
    A modified Lagrange-Galerkin method for a fluid-rigid system with discontinuous density, in: Numer. Math., 2012, vol. 122, no 2, pp. 341–382.
    http://dx.doi.org/10.1007/s00211-012-0460-1
  • 85J. San Martín, J.-F. Scheid, L. Smaranda.
    The Lagrange-Galerkin method for fluid-structure interaction problems, in: Boundary Value Problems., 2013, pp. 213–246.
  • 86J. San Martín, J.-F. Scheid, T. Takahashi, M. Tucsnak.
    Convergence of the Lagrange-Galerkin method for the equations modelling the motion of a fluid-rigid system, in: SIAM J. Numer. Anal., 2005, vol. 43, no 4, pp. 1536–1571 (electronic).
    http://dx.doi.org/10.1137/S0036142903438161
  • 87J. San Martín, J.-F. Scheid, T. Takahashi, M. Tucsnak.
    An initial and boundary value problem modeling of fish-like swimming, in: Arch. Ration. Mech. Anal., 2008, vol. 188, no 3, pp. 429–455.
    http://dx.doi.org/10.1007/s00205-007-0092-2
  • 88J. San Martín, L. Smaranda, T. Takahashi.
    Convergence of a finite element/ALE method for the Stokes equations in a domain depending on time, in: J. Comput. Appl. Math., 2009, vol. 230, no 2, pp. 521–545.
    http://dx.doi.org/10.1016/j.cam.2008.12.021
  • 89J. San Martín, V. Starovoitov, M. Tucsnak.
    Global weak solutions for the two-dimensional motion of several rigid bodies in an incompressible viscous fluid, in: Arch. Ration. Mech. Anal., 2002, vol. 161, no 2, pp. 113–147.
    http://dx.doi.org/10.1007/s002050100172
  • 90D. Serre.
    Chute libre d'un solide dans un fluide visqueux incompressible. Existence, in: Japan J. Appl. Math., 1987, vol. 4, no 1, pp. 99–110.
    http://dx.doi.org/10.1007/BF03167757
  • 91P. Stefanov, G. Uhlmann.
    Thermoacoustic tomography with variable sound speed, in: Inverse Problems, 2009, vol. 25, no 7, 16 p, 075011.
  • 92T. Takahashi.
    Analysis of strong solutions for the equations modeling the motion of a rigid-fluid system in a bounded domain, in: Adv. Differential Equations, 2003, vol. 8, no 12, pp. 1499–1532.
  • 93H. Trinh, T. Fernando.
    Functional observers for dynamical systems, Lecture Notes in Control and Information Sciences, Springer, Berlin, 2012, vol. 420.
  • 94J. L. Vázquez, E. Zuazua.
    Large time behavior for a simplified 1D model of fluid-solid interaction, in: Comm. Partial Differential Equations, 2003, vol. 28, no 9-10, pp. 1705–1738.
    http://dx.doi.org/10.1081/PDE-120024530
  • 95H. F. Weinberger.
    On the steady fall of a body in a Navier-Stokes fluid, in: Partial differential equations (Proc. Sympos. Pure Math., Vol. XXIII, Univ. California, Berkeley, Calif., 1971), Providence, R. I., Amer. Math. Soc., 1973, pp. 421–439.