Team, Visitors, External Collaborators
Overall Objectives
Research Program
Application Domains
Highlights of the Year
New Software and Platforms
New Results
Bilateral Contracts and Grants with Industry
Partnerships and Cooperations
Dissemination
Bibliography
XML PDF e-pub
PDF e-Pub


Section: Overall Objectives

Combining numerical, statistical and stochastic components of a model

Mathematical models that characterize complex biological phenomena are defined by systems of ordinary differential equations when dealing with dynamical systems that evolve with respect to time, or by partial differential equations when there is a spatial component in the model. Also, it is sometimes useful to integrate a stochastic aspect into the dynamical system in order to model stochastic intra-individual variability.

In order to use such methods, we must deal with complex numerical difficulties, generally related to resolving the systems of differential equations. Furthermore, to be able to check the quality of a model (i.e. its descriptive and predictive performances), we require data. The statistical aspect of the model is thus critical in how it takes into account different sources of variability and uncertainty, especially when data come from several individuals and we are interested in characterizing the inter-subject variability. Here, the tools of reference are mixed-effects models.

Confronted with such complex modeling problems, one of the goals of Xpop is to show the importance of combining numerical, statistical and stochastic approaches.