Team, Visitors, External Collaborators
Overall Objectives
Research Program
Application Domains
Highlights of the Year
New Software and Platforms
New Results
Bilateral Contracts and Grants with Industry
Partnerships and Cooperations
Dissemination
Bibliography
XML PDF e-pub
PDF e-Pub


Section: Overall Objectives

Specificities of distributed systems

While the above questions have already received partial answers, they remain largely unexplored in a distributed setting. We focus on structured systems, typically a network of dynamic systems with known interaction topology, the latter being either static or dynamic. Interactions can be synchronous or asynchronous. The state-space explosion raised by such systems has been addressed through two techniques. The first one consists in adopting true-concurrency models, which take advantage of the parallelism to reduce the size of the trajectory sets. The second one looks for modular or distributed “supervision" methods, taking the shape of a network of local supervisors, one per component. While these approaches are relatively well understood, their mixing with quantitative models remains a challenge (as an example, there exists no proper setting assembling concurrency theory with stochastic systems). This field is largely open both for modeling, analysis and verification purposes, and for distributed supervision techniques. The difficulties combine with the emergence of data-driven distributed systems (as web services or data centric systems), where the data exchanged by the various components influence both the behaviors of these components and the quantitative aspects of their reactions (e.g. QoS). Such systems call for symbolic or parametric approaches for which a theory is still missing.