Section: Scientific Foundations
Constraint Programming (CP)
Constraint Programming focuses on iteratively reducing the variable domains (sets of feasible values) by applying logical and problem-specific operators. The latter propagates on selected variables the restrictions that are implied by the other variable domains through the relations between variables that are defined by the constraints of the problem. Combined with enumeration, it gives rise to exact optimization algorithms. A CP approach is particularly effective for tightly constrained problems, feasibility problems and min-max problems (minimizing the maximum of several variable values). Mixed Integer Programming (MIP), on the other hand, is effective for loosely constrained problems and for problems with an objective function defined as the weighted sum of variables. Many problems belong to the intersection of these two classes. For example, some scheduling and timetabling problems are tightly constrained and have a sum-type objective. For such problems, it is reasonable to use algorithms that exploit complementary strengths of Constraint Programming and Mixed Integer Programming.