EN FR
EN FR


Section: Scientific Foundations

Development of numerical systemic models (economy / society / environment) at local scales

The problem we consider is intrinsically interdisciplinary: it draws on social sciences, ecology or science of the planet. The modeling of the considered phenomena must take into account many factors of different nature which interact with varied functional relationships. These heterogeneous dynamics are a priori nonlinear and complex: they may have saturation mechanisms, threshold effects, and may be density dependent. The difficulties are compounded by the strong interconnections of the system (presence of important feedback loops) and multi-scale spatial interactions. Environmental and social phenomena are indeed constrained by the geometry of the area in which they occur. Climate and urbanization are typical examples. These spatial processes involve proximity relationships and neighborhoods, like for example, between two adjacent parcels of land, or between several macroscopic levels of a social organization. The multi-scale issues are due to the simultaneous consideration in the modeling of actors of different types and that operate at specific scales (spatial and temporal). For example, to properly address biodiversity issues, the scale at which we must consider the evolution of rurality is probably very different from the one at which we model the biological phenomena.

In this context, to develop flexible integrated systemic models (upgradable, modular, ...) which are efficient, realistic and easy to use (for developers, modelers and end users) is a challenge in itself. What mathematical representations and what computational tools to use? Nowadays many tools are used: for example, cellular automata (e.g. in the LEAM model), agent models (e.g. URBANSIM), system dynamics (e.g. World3), large systems of ordinary equations (e.g. equilibrium models such as TRANUS), and so on. Each of these tools has strengths and weaknesses. Is it necessary to invent other representations? What is the relevant level of modularity? How to get very modular models while keeping them very coherent and easy to calibrate? Is it preferable to use the same modeling tools for the whole system, or can we freely change the representation for each considered subsystem? How to easily and effectively manage different scales? (difficulty appearing in particular during the calibration process). How to get models which automatically adapt to the granularity of the data and which are always numerically stable? (this has also a direct link with the calibration processes and the propagation of uncertainties). How to develop models that can be calibrated with reasonable efforts, consistent with the (human and material) resources of the agencies and consulting firms that use them?