Section: Scientific Foundations
Machine Learning
The adaptive properties of the nervous system are certainly among its most fascinating characteristics, with a high impact on our cognitive functions. Accordingly, machine learning is a domain [25] that aims at giving such characteristics to artificial systems, using a mathematical framework (probabilities, statistics, data analysis, etc.). Some of its most famous algorithms are directly inspired for neuroscience, at different levels. Connectionist learning algorithms implement, in various neuronal architectures, weight update rules, generally derived from the hebbian rule, performing non supervised (e.g. Kohonen self-organizing maps), supervised (e.g. layered perceptrons) or associative (e.g. Hopfield recurrent network) learning. Other algorithms, not necessarily connectionist, perform other kinds of learning, like reinforcement learning. Machine learning is a very mature domain today and all these algorithms have been extensively studied, at the theoretical and practical levels, with much success. They have also been related to many functions (in the living and artificial domains) like discrimination, categorisation, sensorimotor coordination, planning, etc. and several neuronal structures have been proposed as the substratum for these kinds of learning [22] , [15] . Nevertheless, we believe that, as for previous models, machine learning algorithms remain isolated tools, whereas our systemic approach can bring original views on these problems.
At the cognitive level, most of the problems we face do not rely on only one kind of learning and require skills that have been learned previously. That is the reason why cognitive architectures are often referred to as systems of memory, communicating and sharing information for problem solving. Instead of the classical view in machine learning of a flat architecture, a more complex network of modules must be considered here, as it is the case in the domain of deep learning. In addition, our systemic approach brings the question of incrementally building such a system, with a clear inspiration from developmental sciences. In this perspective, modules can generate internal signals corresponding to internal goals, predictions, error signals, able to supervise the learning of other modules (possibly endowed with a different learning rule), supposed to become autonomous after an instructing period. A typical example is that of episodic learning (in the hippocampus), storing declarative memory about a collection of past episods and supervising the training of a procedural memory in the cortex.
At the behavioral level, as mentionned above, our systemic approach underlines the fundamental links between the adaptive system and the internal and external world. The internal world includes proprioception and interoception, giving information about the body and its needs for integrity and other fundamental programs. The external world includes physical laws that have to be learned and possibly intelligent agents for more complex interactions. Both also involve sensors and actuators that are the interfaces with these worlds and close the loops. Within this rich picture, machine learning generally selects one situation that defines useful sensors and actuators and a corpus with properly segmented data and time, and builds a specific architecture and its corresponding criteria to be satisfied. In our approach however, the first question to be raised is to discover what is the goal, where attention must be focused on and which previous skills must be exploited, with the help of a dynamic architecture and possibly other partners. In this domain, the behavioral and the developmental sciences, observing how and along which stages an agent learns, are of great help to bring some structure to this high dimensional problem.
At the implementation level, this analysis opens many fundamental challenges, hardly considered in machine learning : stability must be preserved despite on-line continuous learning; criteria to be satisfied often refer to behavioral and global measurements but they must be translated to control the local circuit level; in an incremental or developmental approach, how will the development of new functions preserve the integrity and stability of others? In addition, this continous re-arrangement is supposed to involve several kinds of learning, at different time scales (from msec to years in humans) and to interfer with other phenomena like variability and meta-plasticity.
In summary, our main objective in machine learning is to propose on-line learning systems, where several modes of learning have to collaborate and where the protocoles of training are realistic. We promote here a really autonomous learning, where the agent must select by itself internal resources (and build them if not available) to evolve at the best in an unknown world, without the help of any deus-ex-machina to define parameters, build corpus and define training sessions, as it is generally the case in machine learning. To that end, autonomous robotics (cf. § 3.4 ) is a perfect testbed.