Section: Partnerships and Cooperations
National Initiatives
ANR HPAC Project
Participants : Claude-Pierre Jeannerod, Nicolas Louvet, Clément Pernet, Nathalie Revol, Damien Stehlé, Philippe Théveny, Gilles Villard.
“High-performance Algebraic Computing” (HPAC) is a four year ANR project that started in January 2012. The Web page of the project is http://hpac.gforge.inria.fr/ . HPAC is headed by Jean-Guillaume Dumas (CASYS team, LJK laboratory, Grenoble); it involves AriC as well as the Inria project-team MOAIS (LIG, Grenoble), the Inria project-team PolSys (LIP6 lab., Paris), the ARITH group (LIRMM laboratory, Montpellier), and the HPC Project company.
The overall ambition of HPAC is to provide international reference high-performance libraries for exact linear algebra and algebraic systems on multi-processor architecture and to influence parallel programming approaches for algebraic computing. The central goal is to extend the efficiency of the LinBox and FGb libraries to new trend parallel architectures such as clusters of multi-processor systems and graphics processing units in order to tackle a broader class of problems in lattice-based cryptography and algebraic cryptanalysis. HPAC conducts researches along three axes:
-
A domain specific parallel language (DSL) adapted to high-performance algebraic computations;
-
Parallel linear algebra kernels and higher-level mathematical algorithms and library modules;
-
Library composition, their integration into state-of-the-art software, and innovative high performance solutions for cryptology challenges.
ANR TaMaDi Project
Participants : Nicolas Brisebarre, Florent de Dinechin, Guillaume Hanrot, Vincent Lefèvre, Jean-Michel Muller, Damien Stehlé, Serge Torres.
The TaMaDi project (Table Maker's Dilemma, 2010-2013) was funded by the ANR and headed by Jean-Michel Muller. It started in October 2010 and ended in October 2013. The other French teams involved in the project are the Marelle team-project of Inria Sophia Antipolis-Méditerranée, and the PEQUAN team of LIP6 lab., Paris.
The aim of the project was to find “hardest to round” (HR) cases for
the most common functions and floating-point formats. In
floating-point (FP) arithmetic having fully specified “atomic”
operations is a key-requirement for portable, predictable, and
provable numerical software. Since 1985, the four arithmetic
operations and the square root are IEEE specified (it is required
that they should be correctly rounded: the system must always return
the floating-point number nearest the exact result of the operation).
This is not fully the case for the basic mathematical functions
(sine, cosine, exponential, etc.). Indeed, the same function, on the
same argument value, with the same format, may return significantly
different results depending on the environment. As a consequence,
numerical programs using these functions suffer from various
problems. The lack of specification is due to a problem called the
Table Maker's Dilemma (TMD). To compute
-
big precisions: we must get new algorithms for dealing with precisions larger than double precision. Such precisions will become more and more important (even if double precision may be thought as more than enough for a final result, it may not be sufficient for the intermediate results of long or critical calculations);
-
formal proof: we must provide formal proofs of the critical parts of our methods. Another possibility is to have our programs generating certificates that show the validity of their results. We should then focus on proving the certificates;
-
aggressive computing: the methods we have designed for generating HR points in double precision require weeks of computation on hundreds of PCs. Even if we design faster algorithms, we must massively parallelize our methods, and study various ways of doing that.
The various documents on the project can be found at http://tamadiwiki.ens-lyon.fr/tamadiwiki/index.php/Main_Page .
PEPS Quarenum
Participants : Nicolas Louvet, Nathalie Revol.
“Quarenum” is an abbreviation for Qualité et Reproductibilité Numériques dans le Calcul Scientifique Haute Performance. This project focuses on the numerical quality of scientific software, more precisely of high-performance numerical codes. Numerical validation is one aspect of the project, the second one regards numerical reproducibility.