EN FR
EN FR
New Results
Bilateral Contracts and Grants with Industry
Bibliography
New Results
Bilateral Contracts and Grants with Industry
Bibliography


Section: New Results

A Stochastic Geometry Framework for Analyzing Pairwise-Cooperative Cellular Networks

Cooperation in cellular networks has been recently suggested as a promising scheme to improve system performance, especially for cell-edge users. In [34] , we use stochastic geometry to analyze cooperation models where the positions of Base Stations (BSs) follow a Poisson point process distribution and where Voronoi cells define the planar areas associated with them. For the service of each user, either one or two BSs are involved. If two, these cooperate by exchange of user data and channel related information with conferencing over some backhaul link. Our framework generally allows variable levels of channel information at the transmitters. In this paper we investigate the case of limited channel state information for cooperation (channel phase, second neighbour interference), but not the fully adaptive case which would require considerable feedback. The total per-user transmission power is further split between the two transmitters and a common message is encoded. The decision for a user to choose service with or without cooperation is directed by a family of geometric policies depending on its relative position to its two closest base stations. An exact expression of the network coverage probability is derived. Numerical evaluation allows one to analyze significant coverage benefits compared to the non-cooperative case. As a conclusion, cooperation schemes can improve system performance without exploitation of extra network resources.