Section: New Results
Communication and Fault Tolerance in Distributed Networks
Linear Space Bootstrap Communication Schemes
Participants : Carole Delporte-Gallet, Hugues Fauconnier, Eli Gafni, Sergio Rajsbaum.
We consider in [18] , a system of
Black Art: Obstruction-Free -set Agreement with |MWMR registers| < |proccesses|
Participants : Carole Delporte-Gallet, Hugues Fauconnier, Eli Gafni, Sergio Rajsbaum.
When
Nevertheless, recently a positive result was shown that such a system
either wait-free or
obstruction-free can solve an interesting one-shot task. This paper
demonstrates another such result.
It shows that
Adaptive Register Allocation with a Linear Number of Registers
Participants : Carole Delporte-Gallet, Hugues Fauconnier, Eli Gafni, Leslie Lamport.
In [16] , we give an adaptive algorithm in which processes use multi-writer multi-
reader registers to acquire exclusive write access to their own single-writer, multi-reader
registers. It is the first such algorithm that uses a number of registers linear in the
number of participating processes. Previous adaptive algorithms require at least
Uniform Consensus with Homonyms and Omission Failures
Participants : Carole Delporte-Gallet, Hugues Fauconnier, Hung Tran-The.
In synchronous message passing models in which some processes may be homonyms, i.e. may share the same id, we consider the consensus problem. Many results have already been proved concerning Byzantine failures in models with homonyms, we complete in [19] , the picture with crash and omission failures.
Let
Concerning omission failures, when the processes are numerate, i.e. are able to count the number of copies of identical messages they received in each round, uniform consensus is solvable even for fully anonymous processes for
All the proposed protocols are optimal both in the number of communication steps needed, and in the number of processes that can be faulty.
All these results show, (1) that identifiers are not useful for crash and send-omission failures or when processes are numerate, (2) for general omission or for Byzantine failures the number of different ids becomes significant.
Byzantine agreement with homonyms
Participants : Carole Delporte-Gallet, Hugues Fauconnier, Rachid Guerraoui, Anne-Marie Kermarrec, Hung Tran-The.
So far, the distributed computing community has either as-
sumed that all the processes of a distributed system have
distinct identifiers or, more rarely, that the processes are
anonymous and have no identifiers. These are two extremes
of the same general model: namely,
Byzantine agreement with homonyms in synchronous systems
Participants : Carole Delporte-Gallet, Hugues Fauconnier, Hung Tran-The.
We consider in [4] , the Byzantine agreement problem in synchronous
systems with
homonyms. In this model different processes may have the same
authenticated
identifier. In such a system of
Assuming that the processes know the distribution of identifiers we
give a
necessary and sufficient condition on the integer partition of
This bound is to be compared with the
Convergence of the D-iteration algorithm: convergence rate and asynchronous distributed scheme
Participants : Dohy Hong, Fabien Mathieu, Gérard Burnside.
In this paper [25] , we define the general framework to describe the diffusion operators associated to a positive matrix. We define the equations associated to diffusion operators and present some general properties of their state vectors. We show how this can be applied to prove and improve the convergence of a fixed point problem associated to the matrix iteration scheme, including for distributed computation framework. The approach can be understood as a decomposition of the matrix-vector product operation in elementary operations at the vector entry level.