Section: Application Domains
Numerical methods for wave propagation in multi-scale media
We are interested in the development of fast numerical methods for the simulation of electromagnetic waves in multi-scale situations where the geometry of the medium of propagation may be described through caracteristic lengths that are, in some places, much smaller than the average wavelength. In this context, we propose to develop numerical algorithms that rely on simplified models obtained by means of asymptotic analysis applied to the problem under consideration.
Here we focus on situations involving boundary layers and localized singular perturbation problems where wave propagation takes place in media whose geometry or material caracteristics are submitted to a small scale perturbation localized around a point, or a surface, or a line, but not distributed over a volumic sub-region of the propagation medium. Although a huge literature is already available for the study of localized singular perturbations and boundary layer pheneomena, very few works have proposed efficient numerical methods that rely on asymptotic modeling. This is due to their natural functional framework that naturally involves singular functions, which are difficult handle numerically. The aim of this part of our reasearch is to develop and analyze numerical methods for singular perturbation methods that are prone to high order numerical approximation, and robust with respect to the small parameter caracterizing the singular perturbation.