Section: New Results
Anomalous diffusion as an age-structured renewal process
Continuous-time random walks (CTRW) are one of the main mechanisms that are recurrently evoked to explain the emergence of subdiffusion in cells. CTRW were introduced fifty years ago as a generalisation of random walks, where the residence time (the time between two consecutive jumps) is a random variable. If the expectation of the residence time is defined, for instance when it is dirac-distributed or decays exponentially fast, one recovers “normal” Brownian motion. However, when the residence time expectation diverges, the CTRW describes a subdiffusive behavior. The classical approach to CTRW yields a non-Markovian (mean-field) transport equation, which is a serious obstacle when one wants to couple subdiffusion with (bio)chemical reaction. We took an alternative approach to CTRW that maintains the Markovian property of the transport equation at the price of a supplementary independent variable. We associate each random walker with an age
The corresponding article is currently in press [38] .