Section: New Results
Graph Algorithms
Participants : Nathann Cohen, David Coudert, Frédéric Giroire, Fatima Zahra Moataz, Benjamin Momège, Nicolas Nisse, Stéphane Pérennes.
Coati is also interested in the algorithmic aspects of Graph Theory. In general we try to find the most efficient algorithms to solve various problems of Graph Theory and telecommunication networks. We use graph theory to model various network problems. We study their complexity and then we investigate the structural properties of graphs that make these problems hard or easy. In particular, we try to find the most efficient algorithms to solve the problems, sometimes focusing on specific graph classes from which the problems are polynomial-time solvable. Many results introduced here are presented in detail in the PhD thesis of F. Z. Moataz [14] .
Graph Hyperbolicity
The Gromov hyperbolicity is an important parameter for analyzing complex networks which expresses how the metric structure of a network looks like a tree (the smaller gap the better). It has recently been used to provide bounds on the expected stretch of greedy-routing algorithms in Internet-like graphs, and for various applications in network security, computational biology, the analysis of graph algorithms, and the classification of complex networks.
Exact Algorithms for Computing the Gromov Hyperbolicity
The best known theoretical algorithm computing this parameter runs in
In [37] , we provide a more efficient algorithm: although its worst-case complexity remains in
Hyperbolicity of Particular Graph Classes
Topologies for data center networks have been proposed in the literature through various graph classes and operations. A common trait to most existing designs is that they enhance the symmetric properties of the underlying graphs. Indeed, symmetry is a desirable property for interconnection networks because it minimizes congestion problems and it allows each entity to run the same routing protocol. However, despite sharing similarities these topologies all come with their own routing protocol. Recently, generic routing schemes have been introduced which can be implemented for any interconnection networks. The performances of such universal routing schemes are intimately related to the hyperbolicity of the topology. Motivated by the good performances in practice of these new routing schemes, we propose in [56] the first general study of the hyperbolicity of data center interconnection networks. Our findings are disappointingly negative: we prove that the hyperbolicity of most data center topologies scales linearly with their diameter, that it the worst-case possible for hyperbolicity. To obtain these results, we introduce original connection between hyperbolicity and the properties of the endomorphism monoid of a graph. In particular, our results extend to all vertex and edge-transitive graphs. Additional results are obtained for de Bruijn and Kautz graphs, grid-like graphs and networks from the so-called Cayley model.
In [57] , we investigate more specifically on the hyperbolicity of bipartite graphs.
More precisely, given a bipartite graph
Tree-decompositions
We study the computational complexity of different variants of tree-decompositions. We also study their relationship with various pursuit-evasion games.
Diameter of Minimal Separators in Graphs (structure vs metric in graphs)
In [39] , we establish general relationships between the topological properties of graphs and their metric properties. For this purpose, we upper-bound the diameter of the minimal separators in any graph by a function of their sizes. More precisely, we prove that, in any graph
Minimum Size Tree-decompositions
Tree-decompositions are the cornerstone of many dynamic programming algorithms for solving graph problems. Since the complexity of such algorithms generally depends exponentially on the width (size of the bags) of the decomposition, much work has been devoted to compute tree-decompositions with small width. However, practical algorithms computing tree-decompositions only exist for graphs with treewidth less than 4. In such graphs, the time-complexity of dynamic programming algorithms is dominated by the size (number of bags) of the tree-decompositions. It is then interesting to minimize the size of the tree-decompositions. In [48] , [14] , we consider the problem of computing a tree-decomposition of a graph with width at most
Non-deterministic Graph Searching in Trees
Non-deterministic graph searching was introduced by Fomin et al. to provide a unified approach for pathwidth, treewidth, and their interpretations in terms of graph searching games. Given
-Chordal Graphs: from Cops and Robber to Compact Routing via Treewidth
Cops and robber games, introduced by Winkler and Nowakowski and independently defined by Quilliot, concern a team of cops that must capture a robber moving in a graph. We consider in [34] the class of
Connected Surveillance Game
The surveillance game [68] models the problem of web-page prefetching as a pursuit evasion game played on a graph. This two-player game is played turn-by-turn. The first player, called the observer, can mark a fixed amount of vertices at each turn. The second one controls a surfer that stands at vertices of the graph and can slide along edges. The surfer starts at some initially marked vertex of the graph, its objective is to reach an unmarked node before all nodes of the graph are marked. The surveillance number
Distributed Algorithms
Allowing each Node to Communicate only once in a Distributed System: Shared Whiteboard Models
In [21] we study distributed algorithms on massive graphs where links represent a particular relationship between nodes (for instance, nodes may represent phone numbers and links may indicate telephone calls). Since such graphs are massive they need to be processed in a distributed way. When computing graph-theoretic properties, nodes become natural units for distributed computation. Links do not necessarily represent communication channels between the computing units and therefore do not restrict the communication flow. Our goal is to model and analyze the computational power of such distributed systems where one computing unit is assigned to each node. Communication takes place on a whiteboard where each node is allowed to write at most one message. Every node can read the contents of the whiteboard and, when activated, can write one small message based on its local knowledge. When the protocol terminates its output is computed from the final contents of the whiteboard. We describe four synchronization models for accessing the whiteboard. We show that message size and synchronization power constitute two orthogonal hierarchies for these systems.We exhibit problems that separate these models, i.e., that can be solved in one model but not in a weaker one, even with increased message size. These problems are related to maximal independent set and connectivity. We also exhibit problems that require a given message size independently of the synchronization model.
Computing on Rings by Oblivious Robots: a Unified Approach for Different Tasks
A set of autonomous robots have to collaborate in order to accomplish a common task in a ring-topology where neither nodes nor edges are labeled (that is, the ring is anonymous). In [36] , we present a unified approach to solve three important problems: the exclusive perpetual exploration, the exclusive perpetual clearing, and the gathering problems. In the first problem, each robot aims at visiting each node infinitely often while avoiding that two robots occupy a same node (exclusivity property); in exclusive perpetual clearing (also known as searching), the team of robots aims at clearing the whole ring infinitely often (an edge is cleared if it is traversed by a robot or if both its endpoints are occupied); and in the gathering problem, all robots must eventually occupy the same node. We investigate these tasks in the Look-Compute-Move model where the robots cannot communicate but can perceive the positions of other robots. Each robot is equipped with visibility sensors and motion actuators, and it operates in asynchronous cycles. In each cycle, a robot takes a snapshot of the current global configuration (Look), then, based on the perceived configuration, takes a decision to stay idle or to move to one of its adjacent nodes (Compute), and in the latter case it eventually moves to this neighbor (Move). Moreover, robots are endowed with very weak capabilities. Namely, they are anonymous, asynchronous, oblivious, uniform (execute the same algorithm) and have no common sense of orientation. In this setting, we devise algorithms that, starting from an exclusive and rigid (i.e. aperiodic and asymmetric) configuration, solve the three above problems in anonymous ring-topologies.
Miscellaneous
Finding Paths in Grids with Forbidden Transitions
A transition in a graph is a pair of adjacent edges. Given a graph