Section: Partnerships and Cooperations

European Initiatives

FP7 & H2020 Projects

  • Coordinator: Inria (DIVERSE)

  • Partners: SINTEF, Université de Rennes 1, Trinity College Dublin, Inria (DiverSE, SPIRALS)

  • Dates: 2013-2016

  • Abstract: DIVERSIFY explores diversity as the foundation for a novel software design principle and increased adaptive capacities in CASs. Higher levels of diversity in the system provide a pool of software solutions that can eventually be used to adapt to unforeseen situations at design time. The scientific development of DIVERSIFY is based on a strong analogy with ecological systems, biodiversity, and evolutionary ecology. DIVERSIFY brings together researchers from the domains of software-intensive distributed systems and ecology in order to translate ecological concepts and processes into software design principles.

  • Coordinator: SINTEF

  • Other partners: Inria, Software AG, ATC, Tellu, eZmonitoring

  • Dates: 2013-2016

  • Abstract: The idea of the HEADS project is to leverage model-driven software engineering and generative programming techniques to provide a new integrated software engineering approach which allow advanced exploitation the full range of diversity and specificity of the future computing continuum. The goal is to empower the software and services industry to better take advantage of the opportunities of the future computing continuum and to effectively provide new innovative services that are seamlessly integrated to the physical world making them more pervasive, more robust, more reactive and closer (physically, socially, emotionally, etc.) to their users. We denote such services HD-services. HD-services (Heterogeneous and Distributed services) characterize the class of services or applications within the Future Internet whose logic and value emerges from a set of communicating software components distributed on a heterogeneous computing continuum from clouds to mobile devices, sensors and/or smart-objects.

Collaborations in European Programs, except FP7 & H2020

ICT COST Action MPM4CPS (IC1404)
  • Chair of the Action: Prof Hans Vangheluwe (BE)

  • Dates: 2014-2018

  • Abstract: Truly complex, designed systems, known as Cyber Physical Systems (CPS), are emerging that integrate physical, software, and network aspects. To date, no unifying theory nor systematic design methods, techniques and tools exist for such systems. Individual (mechanical, electrical, network or software) engineering disciplines only offer partial solutions. Multi-paradigm Modelling (MPM) proposes to model every part and aspect of a system explicitly, at the most appropriate level(s) of abstraction, using the most appropriate modelling formalism(s). Modelling languages’ engineering, including model transformation, and the study of their semantics, are used to realize MPM. MPM is seen as an effective answer to the challenges of designing CPS. This COST Action promotes the sharing of foundations, techniques and tools, and provide educational resources, to both academia and industry. This is achieved by bringing together and disseminating knowledge and experiments on CPS problems and MPM solutions. Benoit Combemale is a member of the management committee.

  • Coordinator: Thales Research and Technology

  • Other partners: Thales Global Services, Thales Communications and Security, OBEO, ALL4TEC, Onera, Inria, Université Paris VI, Codenomicon, STUK - Radiation and Nuclear Safety Authority, POHTOnSense Oy, University of Oulu, University of Jyvaskyla, Space Applications Services NV, Melexis, E2S, Katholieke Universiteit Leuven

  • Dates: 2012-2015

  • Abstract: MERgE stands for "Multi-Concerns Interactions System Engineering". Within the "Engineering support" theme of ITEA2 roadmap, the purpose of this project is to develop and demonstrate innovative concepts and design tools addressing in combination the "Safety" and "Security" concerns, targeting the elaboration of effective architectural solutions. MERgE will provide tools and solutions for combining safety and security concerns in systems development in a holistic way. It will provide academically solid and practice proven solutions and models for system developers and system owners to tackle the challenges of designing seamless optimal cost effective safe and secure solutions conformant to the model driven engineering paradigm. This will be done by tightly integrating the following paradigms: requirement engineering, safety, security and risk management in an over-all design process which is supported by adequate tools and methods. MERgE aims to bring a system engineering solution for Combined Safe & Secure system design. The main technical innovation of the project is the application of state of the art design tools tailorisation capabilities and "multi concern engineering" core technologies to the issue of interactions of "Safety" and "Security" concerns as well as other concerns like "Performance" or "Timing" in the design process.

Collaborations with Major European Organizations

  • SINTEF, ICT (Norway): Model-driven systems development for the construction of distributed, heterogeneous applications. We collaborate since 2008 and are currently in two FP7 projects together.

  • Université du Luxembourg, (Luxembourg): Models@runtime for dynamic adaptation and multi-objective elasticity in cloud management; model-driven development.

  • Open University (UK): models@runtime for the Internet of Things.