Section: Research Program
Information Theory
Classical models of stochastic geometry (SG) are not sufficient for analyzing wireless networks as they ignore the specific nature of radio channels.
Consider a wireless communication network made of a collection of nodes which in turn can be transmitters or receivers. At a given time, some subset of this collection of nodes simultaneously transmit, each toward its own receiver. Each transmitter–receiver pair in this snapshot requires its own wireless link. For each such wireless link, the power of the signal received from the link transmitter is jammed by the powers of the signals received from the other transmitters. Even in the simplest model where the power radiated from a point decays in some isotropic way with Euclidean distance, the geometry of the location of nodes plays a key role within this setting since it determines the signal to interference and noise ratio (SINR) at the receiver of each such link and hence the possibility of establishing simultaneously this collection of links at a given bit rate, as shown by information theory (IT). In this definition, the interference seen by some receiver is the sum of the powers of the signals received from all transmitters excepting its own. The SINR field, which is of an essentially geometric nature, hence determines the connectivity and the capacity of the network in a broad sense. The essential point here is that the characteristics and even the feasibilities of the radio links that are simultaneously active are strongly interdependent and determined by the geometry. Our work is centered on the development of an IT-aware stochastic geometry addressing this interdependence.