EN FR
EN FR


Section: New Results

Fluid motion estimation

Stochastic uncertainty models for motion estimation

Participants : Etienne Mémin, Abed Malti.

In this study we have proposed a stochastic formulation of the brightness consistency used principally in motion estimation problems. In this formalization the image luminance is modeled as a continuous function transported by a flow known only up to some uncertainties. Stochastic calculus then enables to built conservation principles which take into account the motion uncertainties. These uncertainties defined either from isotropic or anisotropic models can be estimated jointly to the motion estimates. Such a formulation, besides providing estimates of the velocity field and of its associated uncertainties, allows us to naturally define a linear multiresolution scale-space framework. The corresponding estimator, implemented within a local least squares approach, has shown to improve significantly the results of the corresponding deterministic estimator (Lucas and Kanade estimator). This fast local motion estimator provides results that are of the same order of accuracy than state-of-the-art dense fluid flow motion estimator for particle images. The uncertainties estimated supply a useful piece of information in the context of data assimilation. This ability has been exploited to define multiscale incremental data assimilation filtering schemes. The development of an efficient GPU based version of this estimator has been investigated through the Inria ADT project FLUMILAB

3D flows reconstruction from image data

Participants : Kai Berger, Cédric Herzet, Abed Malti.

Our work focuses on the design of new tools for the estimation of 3D turbulent flow motion in the experimental setup of Tomo-PIV. This task includes both the study of physically-sound models on the observations and the fluid motion, and the design of low-complexity and accurate estimation algorithms.

This year, we keep on our investigation on the problem of efficient volume reconstruction. Our work takes place within the context of some modern optimization techniques. First, we focussed our attention on the family of proximal and splitting methods and showed that the standard techniques commonly adopted in the TomoPIV literature can be seen as particular cases of such methodologies. Recasting standard methodologies in a more general framework allowed us to propose extensions of the latter: i) we showed that the parcimony characterizing the sought volume can be accounted for without increasing the complexity of the algorithms (e.g., by including simple thresholding operations); ii) we emphasized that the speed of convergence of the standard reconstruction algorithms can be improved by using Nesterov’s acceleration schemes; iii) we also proposed a totally novel way of reconstructing the volume by using the so-called “alternating direction of multipliers method" (ADMM) . This work has led to the publication of two contributions at the international conference on particle image velocimetry (PIV) in 2015.

On top of this work, we also focussed on another crucial step of the volume reconstruction problem, namely the pruning of the model. The pruning task consists in identifying some positions in the volume of interest which cannot contains any particle. Removing this position from the problem can then potentially allow for a dramatic dimensionality reduction. This year, we provide a methodological answer to this problem through the prism of the so-called "screening" techniques which have been proposed in the community of machine learning. Our work has led to the submission of one contribution to the international conference on acoustics, speech and signal processing.

Sparse-representation algorithms

Participant : Cédric Herzet.

The paradigm of sparse representations is a rather new concept which turns out to be central in many domains of signal processing. In particular, in the field of fluid motion estimation, sparse representation appears to be potentially useful at several levels: i) it provides a relevant model for the characterization of the velocity field in some scenarios; ii) it plays a crucial role in the recovery of volumes of particles in the 3D Tomo-PIV problem.

Unfortunately, the standard sparse representation problem is known to be NP hard. Therefore, heuristic procedures have to be devised to access to the solution of this problem. Among the popular methods available in the literature, one can mention orthogonal matching pursuit (OMP), orthogonal least squares (OLS) and the family of procedures based on the minimization of p norms. In order to assess and improve the performance of these algorithms, theoretical works have been undertaken in order to understand under which conditions these procedures can succeed in recovering the "true" sparse vector.

This year, we contributed to this research axis by deriving conditions of success for the algorithms mentioned above when the amplitudes of the nonzero coefficients in the sparse vector obey some decay. In a TomoPIV context, this decay corresponds to the fact that not all the particles in the fluid diffuse the same quantity of light (notably because of illumination or radius variation). In particular, we show that the standard coherence-based guarantees for OMP/OLS can be relaxed by an amount which depends on the decay of the nonzero coefficients. Our work have led to the acceptation of a paper in the journal IEEE Transactions on Information Theory.