Section: Partnerships and Cooperations
European Initiatives
FP7 & H2020 Projects
-
Project title: Geometric Control Methods for the Heat and Schroedinger Equations
-
Abstract: The aim of this project is to study certain PDEs for which geometric control techniques open new horizons. More precisely we plan to exploit the relation between the sub-Riemannian distance and the properties of the kernel of the corresponding hypoelliptic heat equation and to study controllability properties of the Schroedinger equation.
All subjects studied in this project are applications-driven: the problem of controllability of the Schroedinger equation has direct applications in Laser spectroscopy and in Nuclear Magnetic Resonance; the problem of nonisotropic diffusion has applications in cognitive neuroscience (in particular for models of human vision).
Participants. Main collaborator: Mario Sigalotti. Other members of the team: Andrei Agrachev, Riccardo Adami, Thomas Chambrion, Grégoire Charlot, Yacine Chitour, Jean-Paul Gauthier, Frédéric Jean.