EN FR
EN FR


Section: Application Domains

Biodiversity and culture

Nowadays, simulations of the hydrodynamic regime of a river, a lake or an estuary, are not restricted to the determination of the water depth and the fluid velocity. They have to predict the distribution and evolution of external quantities such as pollutants, biological species or sediment concentration.

The potential of micro-algae as a source of biofuel and as a technological solution for CO2 fixation is the subject of intense academic and industrial research. Large-scale production of micro-algae has potential for biofuel applications owing to the high productivity that can be attained in high-rate raceway ponds. One of the key challenges in the production of micro-algae is to maximize algae growth with respect to the exogenous energy that must be used (paddlewheel, pumps, ...). There is a large number of parameters that need to be optimized (characteristics of the biological species, raceway shape, stirring provided by the paddlewheel). Consequently our strategy is to develop efficient models and numerical tools to reproduce the flow induced by the paddlewheel and the evolution of the biological species within this flow. Here, mathematical models can greatly help us reduce experimental costs. Owing to the high heterogeneity of raceways due to gradients of temperature, light intensity and nutrient availability through water height, we cannot use depth-averaged models. We adopt instead more accurate multilayer models that have recently been proposed. However, it is clear that many complex physical phenomena have to be added to our model, such as the effect of sunlight on water temperature and density, evaporation and external forcing.

Many problems previously mentioned also arise in larger scale systems like lakes. Hydrodynamics of lakes is mainly governed by geophysical forcing terms: wind, temperature variations, ...