EN FR
EN FR


Section: Research Program

Multi-scale modeling and coupling mechanisms for biomechanical systems, with mathematical and numerical analysis

Over the past decade, we have laid out the foundations of a multi-scale 3D model of the cardiac mechanical contraction responding to electrical activation. Several collaborations have been crucial in this enterprise, see below references. By integrating this formulation with adapted numerical methods, we are now able to represent the whole organ behavior in interaction with the blood during complete heart beats. This subject was our first achievement to combine a deep understanding of the underlying physics and physiology and our constant concern of proposing well-posed mathematical formulations and adequate numerical discretizations. In fact, we have shown that our model satisfies the essential thermo-mechanical laws, and in particular the energy balance, and proposed compatible numerical schemes that – in consequence – can be rigorously analyzed, see [5]. In the same spirit, we have recently formulated a poromechanical model adapted to the blood perfusion in the heart, hence precisely taking into account the large deformation of the mechanical medium, the fluid inertia and moving domain, and so that the energy balance between fluid and solid is fulfilled from the model construction to its discretization, see [6].