Section: New Results

Slow-Fast Dynamics in Neuroscience

Canards, folded nodes and mixed-mode oscillations in piecewise-linear slow-fast systems

Participants : Mathieu Desroches [Inria MathNeuro] , Antoni Guillamon [Polytechnic University of Catalunya, Spain] , Enrique Ponce [University of Seville, Spain] , Rafel Prohens [University of the Balearic Islands, Spain] , Antonio E. Teruel [University of the Balearic Islands, Spain] , Serafim Rodrigues [Plymouth University, UK] .

Canard-induced phenomena have been extensively studied in the last three decades, from both the mathematical and the application viewpoints. Canards in slow-fast systems with (at least) two slow variables, especially near folded-node singularities, give an essential generating mechanism for mixed-mode oscillations (MMOs) in the framework of smooth multiple timescale systems. There is a wealth of literature on such slow-fast dynamical systems and many models displaying canard-induced MMOs, particularly in neuroscience. In parallel, since the late 1990s several papers have shown that the canard phenomenon can be faithfully reproduced with piecewise-linear (PWL) systems in two dimensions, although very few results are available in the three-dimensional case. The present paper aims to bridge this gap by analyzing canonical PWL systems that display folded singularities, primary and secondary canards, with a similar control of the maximal winding number as in the smooth case. We also show that the singular phase portraits are compatible in both frameworks. Finally, we show using an example how to construct a (linear) global return and obtain robust PWL MMOs.

This work has been published in SIAM Review and is available as [16].

Spike-adding in parabolic bursters: the role of folded-saddle canards

Participants : Mathieu Desroches [Inria MathNeuro] , Martin Krupa [Inria MathNeuro] , Serafim Rodrigues [Plymouth University, UK] .

The present work develops a new approach to studying parabolic bursting, and also proposes a novel four-dimensional canonical and polynomial-based parabolic burster. In addition to this new polynomial system, we also consider the conductance-based model of the Aplysia R15 neuron known as the Plant model, and a reduction of this prototypical biophysical parabolic burster to three variables, including one phase variable, namely the Baer-Rinzel-Carillo (BRC) phase model. Revisiting these models from the perspective of slow-fast dynamics reveals that the number of spikes per burst may vary upon parameter changes, however the spike-adding process occurs in an explosive fashion that involves special solutions called canards. This spike-adding canard explosion phenomenon is analysed by using tools from geometric singular perturbation theory in tandem with numerical bifurcation techniques. We find that the bifurcation structure persists across all considered systems, that is, spikes within the burst are incremented via the crossing of an excitability threshold given by a particular type of canard orbit, namely the true canard of a folded-saddle singularity. However there can be a difference in the spike-adding transitions in parameter space from one case to another, according to whether the process is continuous or discontinuous, which depends upon the geometry of the folded-saddle canard. Using these findings, we construct a new polynomial approximation of the Plant model, which retains all the key elements for parabolic bursting, including the spike-adding transitions mediated by folded-saddle canards. Finally, we briefly investigate the presence of spike-adding via canards in planar phase models of parabolic bursting, namely the theta model by Ermentrout and Kopell.

This work has been published in Physica D and is available as [17].

Slow-fast transitions to seizure states in the Wendling-Chauvel neural mass model

Participants : Mathieu Desroches [Inria MathNeuro] , Olivier Faugeras [Inria MathNeuro] , Martin Krupa [Inria MathNeuro] .

We revisit the Wendling-Chauvel neural mass model by reducing it to eight ODEs and adding a differential equation that accounts for a dynamic evolution of the slow inhibitory synaptic gain. This allows to generate dynamic transitions in the resulting nine-dimensional model. The output of the extended model can be related to EEG patterns observed during epileptic seizure, in particular isolated pre-ictal spikes and low-voltage fast oscillations at seizure onset. We analyse the extended model using basic tools from slow-fast dynamical systems theory and relate the main transitions towards seizure states to torus canards, a type of solutions that has been shown to explain the spiking to bursting transition in many neural models. We find that the original ten-dimensional Wendling-Chauvel model can be reduced to eight dimensions, two variables being scaled versions of two other variables of the model. We then obtain a model with four PSP blocks, which is consistent with the block-diagrams typically presented to describe this model. Instead of varying the slow inhibitory synaptic gain parameter B quasi-statically, or just performing numerical bifurcation analysis in B as the structure of the fast subsystem of an hypothetical extended system, we construct a true slow dynamics for B, depending sensitively on the main PSP output of the model, Y0. Near fold bifurcation of limit cycles of the original model, the solution to the extended model performs fast low-amplitude oscillations close to both attracting and repelling branches of limit cycles, which is the signature of a torus canard phenomenon.

This work has been published in Opera Medica & Physiologica and is available as [14].

Canards in a minimal piecewise-linear square-wave burster

Participants : Mathieu Desroches [Inria MathNeuro] , Soledad Fernández-García [University of Seville, Spain] , Martin Krupa [Inria MathNeuro] .

We construct a piecewise-linear (PWL) approximation of the Hindmarsh-Rose (HR) neuron model that is minimal, in the sense that the vector field has the least number of linearity zones, in order to reproduce all the dynamics present in the original HR model with classical parameter values. This includes square-wave bursting and also special trajectories called canards, which possess long repelling segments and organise the transitions between stable bursting patterns with n and n?+?1 spikes, also referred to as spike-adding canard explosions. We propose a first approximation of the smooth HR model, using a continuous PWL system, and show that its fast subsystem cannot possess a homoclinic bifurcation, which is necessary to obtain proper square-wave bursting. We then relax the assumption of continuity of the vector field across all zones, and we show that we can obtain a homoclinic bifurcation in the fast subsystem. We use the recently developed canard theory for PWL systems in order to reproduce the spike-adding canard explosion feature of the HR model as studied, e.g., in Desroches et al., Chaos 23(4), 046106 (2013).

This work has been published in Chaos and is available as [15].

From Canards of Folded Singularities to Torus Canards in a Forced van der Pol Equation

Participants : John Burke [Boston University, USA] , Mathieu Desroches [Inria MathNeuro] , Albert Granados [Technical University of Denmark, Denmark] , Tasso J. Kaper [Boston University, USA] , Martin Krupa [Inria MathNeuro] , Theodore Vo [Boston University, USA] .

In this article, we study canard solutions of the forced van der Pol equation in the relaxation limit for low-, intermediate-, and high-frequency periodic forcing. A central numerical observation made herein is that there are two branches of canards in parameter space which extend across all positive forcing frequencies. In the low-frequency forcing regime, we demonstrate the existence of primary maximal canards induced by folded saddle nodes of type I and establish explicit formulas for the parameter values at which the primary maximal canards and their folds exist. Then, we turn to the intermediate- and high-frequency forcing regimes and show that the forced van der Pol possesses torus canards instead. These torus canards consist of long segments near families of attracting and repelling limit cycles of the fast system, in alternation. We also derive explicit formulas for the parameter values at which the maximal torus canards and their folds exist. Primary maximal canards and maximal torus canards correspond geometrically to the situation in which the persistent manifolds near the family of attracting limit cycles coincide to all orders with the persistent manifolds that lie near the family of repelling limit cycles. The formulas derived for the folds of maximal canards in all three frequency regimes turn out to be representations of a single formula in the appropriate parameter regimes, and this unification confirms the central numerical observation that the folds of the maximal canards created in the low-frequency regime continue directly into the folds of the maximal torus canards that exist in the intermediate- and high-frequency regimes. In addition, we study the secondary canards induced by the folded singularities in the low-frequency regime and find that the fold curves of the secondary canards turn around in the intermediate-frequency regime, instead of continuing into the high-frequency regime. Also, we identify the mechanism responsible for this turning. Finally, we show that the forced van der Pol equation is a normal form-type equation for a class of single-frequency periodically driven slow/fast systems with two fast variables and one slow variable which possess a non-degenerate fold of limit cycles. The analytic techniques used herein rely on geometric desingularisation, invariant manifold theory, Melnikov theory, and normal form methods. The numerical methods used herein were developed in Desroches et al. (SIAM J Appl Dyn Syst 7:1131–1162, 2008, Nonlinearity 23:739–765 2010).

This work has been published in Journal of Nonlinear Science and is available as [12].

Mixed-mode oscillations in a piecewise-linear system with multiple time scale coupling

Participants : Soledad Fernández-García [University of Seville, Spain] , Martin Krupa [Inria MathNeuro] , Frédérique Clément [Inria Mycenae] .

In this work, we analyze a four dimensional slow?fast piecewise linear system with three time scales presenting Mixed-Mode Oscillations. The system possesses an attractive limit cycle along which oscillations of three different amplitudes and frequencies can appear, namely, small oscillations, pulses (medium amplitude) and one surge (largest amplitude). In addition to proving the existence and attractiveness of the limit cycle, we focus our attention on the canard phenomena underlying the changes in the number of small oscillations and pulses. We analyze locally the existence of secondary canards leading to the addition or subtraction of one small oscillation and describe how this change is globally compensated for or not with the addition or subtraction of one pulse.

This work has been published in Physica D and is available as [18].