Section: New Results
Kinetic modeling and simulation of edge tokamak plasmas and plasma-wall interactions
Participants : Sever Hirstoaga, David Coulette, Giovanni Manfredi.
We performed a full parallelization (over species and using 4D domain decomposition) of the 1D3V Multi-species Vlasov-Poisson finite-volumes code. The 4D code was then used to perform, by means of parametric studies, an analysis of the structure of the multi-scale boundary layer (the so-called Debye sheath and various pre-sheaths) for a magnetized-plasma in contact with an absorbing wall. This study allowed us to show, notably, that when the strong confining magnetic field is close to grazing incidence with respect to the absorbing surface, the boundary layer extends further into the plasma and as a result the magnitude of the electric field is lessened.
A second study was devoted to the dynamics of the propagation of the so-called "ELMs" (Edge-Localized-Modes) at the edge of Tokamak devices. The