Section: Research Program

Modeling for oceanic and atmospheric flows

Current numerical oceanic and atmospheric models suffer from a number of well-identified problems. These problems are mainly related to lack of horizontal and vertical resolution, thus requiring the parameterization of unresolved (subgrid scale) processes and control of discretization errors in order to fulfill criteria related to the particular underlying physics of rotating and strongly stratified flows. Oceanic and atmospheric coupled models are increasingly used in a wide range of applications from global to regional scales. Assessment of the reliability of those coupled models is an emerging topic as the spread among the solutions of existing models (e.g., for climate change predictions) has not been reduced with the new generation models when compared to the older ones.

Advanced methods for modeling 3D rotating and stratified flows The continuous increase of computational power and the resulting finer grid resolutions have triggered a recent regain of interest in numerical methods and their relation to physical processes. Going beyond present knowledge requires a better understanding of numerical dispersion/dissipation ranges and their connection to model fine scales. Removing the leading order truncation error of numerical schemes is thus an active topic of research and each mathematical tool has to adapt to the characteristics of three dimensional stratified and rotating flows. Studying the link between discretization errors and subgrid scale parameterizations is also arguably one of the main challenges.

Complexity of the geometry, boundary layers, strong stratification and lack of resolution are the main sources of discretization errors in the numerical simulation of geophysical flows. This emphasizes the importance of the definition of the computational grids (and coordinate systems) both in horizontal and vertical directions, and the necessity of truly multi resolution approaches. At the same time, the role of the small scale dynamics on large scale circulation has to be taken into account. Such parameterizations may be of deterministic as well as stochastic nature and both approaches are taken by the AIRSEA team. The design of numerical schemes consistent with the parameterizations is also arguably one of the main challenges for the coming years. This work is complementary and linked to that on parameters estimation described in 3.4.

Ocean Atmosphere interactions and formulation of coupled models State-of-the-art climate models (CMs) are complex systems under continuous development. A fundamental aspect of climate modeling is the representation of air-sea interactions. This covers a large range of issues: parameterizations of atmospheric and oceanic boundary layers, estimation of air-sea fluxes, time-space numerical schemes, non conforming grids, coupling algorithms ...Many developments related to these different aspects were performed over the last 10-15 years, but were in general conducted independently of each other.

The aim of our work is to revisit and enrich several aspects of the representation of air-sea interactions in CMs, paying special attention to their overall consistency with appropriate mathematical tools. We intend to work consistently on the physics and numerics. Using the theoretical framework of global-in-time Schwarz methods, our aim is to analyze the mathematical formulation of the parameterizations in a coupling perspective. From this study, we expect improved predictability in coupled models (this aspect will be studied using techniques described in 3.4). Complementary work on space-time nonconformities and acceleration of convergence of Schwarz-like iterative methods (see 7.1.2) are also conducted.