Section: New Results

Assimilation of Images

Participants : Elise Arnaud, François-Xavier Le Dimet, Maëlle Nodet, Arthur Vidard, Nelson Feyeux.

Direct assimilation of image sequences

At the present time the observation of Earth from space is done by more than thirty satellites. These platforms provide two kinds of observational information:

  • Eulerian information as radiance measurements: the radiative properties of the earth and its fluid envelops. These data can be plugged into numerical models by solving some inverse problems.

  • Lagrangian information: the movement of fronts and vortices give information on the dynamics of the fluid. Presently this information is scarcely used in meteorology by following small cumulus clouds and using them as Lagrangian tracers, but the selection of these clouds must be done by hand and the altitude of the selected clouds must be known. This is done by using the temperature of the top of the cloud.

Our current developments are targeted at the use of « Level Sets » methods to describe the evolution of the images. The advantage of this approach is that it permits, thanks to the level sets function, to consider the images as a state variable of the problem. We have derived an Optimality System including the level sets of the images. This approach is being applied to the tracking of oceanic oil spills [10]

A collaborative project started with C. Lauvernet (IRSTEA) in order to make use of our image assimilation strategies on the control of pesticide transfer.

Optimal transport for image assimilation

We investigate the use of optimal transport based distances for data assimilation, and in particular for assimilating dense data such as images. The PhD thesis of N. Feyeux studied the impact of using the Wasserstein distance in place of the classical Euclidean distance (pixel to pixel comparison). In a simplified one dimensional framework, we showed that the Wasserstein distance is indeed promising. Data assimilation experiments with the Shallow Water model have been performed and confirm the interest of the Wasserstein distance. Results have been presented at conferences and seminars and a paper is under minor revision at NPG [49].