EN FR
EN FR
CQFD - 2017
Overall Objectives
Application Domains
New Software and Platforms
New Results
Bilateral Contracts and Grants with Industry
Bibliography
Overall Objectives
Application Domains
New Software and Platforms
New Results
Bilateral Contracts and Grants with Industry
Bibliography


Section: New Results

Multivariate Analysis of Mixed Data

In [47], we focus on mixed data that arise when observations are described by a mixture of numerical and categorical variables. The R package PCAmixdata extends standard multivariate analysis methods to incorporate this type of data. The key techniques/methods included in the package are principal component analysis for mixed data (PCAmix), varimax-like orthogonal rotation for PCAmix, and multiple factor analysis for mixed multi-table data. This paper gives a synthetic presentation of the three algorithms with details to help the user understand graphical and numerical outputs of the corresponding R functions. The three main methods are illustrated on a real dataset composed of four data tables characterizing living conditions in different municipalities in the Gironde region of southwest France.

Authors: Marie Chavent (Inria CQFD), Vanessa Kuentz, Amaury Labenne, Jérôme Saracco (Inria CQFD).