EN FR
EN FR
New Software and Platforms
New Results
Bilateral Contracts and Grants with Industry
Bibliography
New Software and Platforms
New Results
Bilateral Contracts and Grants with Industry
Bibliography


Section: New Results

Distributed control of a fleet of batteries

[22] Battery storage is increasingly important for grid-level services such as frequency regulation, load following, and peak-shaving. The management of a large number of batteries presents a control challenge: How can we solve the apparently combinatorial problem of coordinating a large number of batteries with discrete, and possibly slow rates of charge/discharge? The control solution must respect battery constraints, and ensure that the aggregate power output tracks the desired grid-level signal. A distributed stochastic control architecture is introduced as a potential solution. Extending prior research on distributed control of flexible loads, a randomized decision rule is defined for each battery of the same type. The power mode at each time-slot is a randomized function of the grid-signal and its internal state. The randomized decision rule is designed to maximize idle time of each battery, and keep the state-of-charge near its optimal level, while ensuring that the aggregate power output can be continuously controlled by a grid operator or aggregator. Numerical results show excellent tracking, and low stress to individual batteries.