FR

EN

Homepage Inria website
  • Inria login
  • The Inria's Research Teams produce an annual Activity Report presenting their activities and their results of the year. These reports include the team members, the scientific program, the software developed by the team and the new results of the year. The report also describes the grants, contracts and the activities of dissemination and teaching. Finally, the report gives the list of publications of the year.

  • Legal notice
  • Cookie management
  • Personal data
  • Cookies



Section: Application Domains

Verification of safety critical embedded software

The verification of safety critical embedded software is a very important application domain for our group. First, this field requires a high confidence in software, as a bug may cause disastrous events. Thus, it offers an obvious opportunity for a strong impact. Second, such software usually have better specifications and a better design than many other families of software, hence are an easier target for developing new static analysis techniques (which can later be extended for more general, harder to cope with families of programs). This includes avionics, automotive and other transportation systems, medical systems ...

For instance, the verification of avionics systems represent a very high percentage of the cost of an airplane (about 30 % of the overall airplane design cost). The state of the art development processes mainly resort to testing in order to improve the quality of software. Depending on the level of criticality of a software (at the highest levels, any software failure would endanger the flight) a set of software requirements are checked with test suites. This approach is both costly (due to the sheer amount of testing that needs to be performed) and unsound (as errors may go unnoticed, if they do not arise on the test suite).

By contrast, static analysis can ensure higher software quality at a lower cost. Indeed, a static analyzer will catch all bugs of a certain kind. Moreover, a static analysis run typically lasts a few hours, and can be integrated in the development cycle in a seamless manner. For instance, Astrée successfully verified the absence of runtime error in several families of safety critical fly-by-wire avionic software, in at most a day of computation, on standard hardware. Other kinds of synchronous embedded software have also been analyzed with good results.

In the future, we plan to greatly extend this work so as to verify other families of embedded software (such as communication, navigation and monitoring software) and other families of properties (such as security and liveness properties).

Embedded software in charge of communication, navigation, and monitoring typically relies on a parallel structure, where several threads are executed concurrently, and manage different features (input, output, user interface, internal computation, logging ...). This structure is also often found in automotive software. An even more complex case is that of distributed systems, where several separate computers are run in parallel and take care of several sub-tasks of a same feature, such as braking. Such a logical structure is not only more complex than the synchronous one, but it also introduces new risks and new families of errors (deadlocks, data-races...). Moreover, such less well designed, and more complex embedded software often utilizes more complex data-structures than synchronous programs (which typically only use arrays to store previous states) and may use dynamic memory allocation, or build dynamic structures inside static memory regions, which are actually even harder to verify than conventional dynamically allocated data structures. Complex data-structures also introduce new kinds of risks (the failure to maintain structural invariants may lead to runtime errors, non termination, or other software failures). To verify such programs, we will design additional abstract domains, and develop new static analysis techniques, in order to support the analysis of more complex programming language features such as parallel and concurrent programming with threads and manipulations of complex data structures. Due to their size and complexity, the verification of such families of embedded software is a major challenge for the research community.

Furthermore, embedded systems also give rise to novel security concerns. It is in particular the case for some aircraft-embedded computer systems, which communicate with the ground through untrusted communication media. Besides, the increasing demand for new capabilities, such as enhanced on-board connectivity, e.g. using mobile devices, together with the need for cost reduction, leads to more integrated and interconnected systems. For instance, modern aircrafts embed a large number of computer systems, from safety-critical cockpit avionics to passenger entertainment. Some systems meet both safety and security requirements. Despite thorough segregation of subsystems and networks, some shared communication resources raise the concern of possible intrusions. Because of the size of such systems, and considering that they are evolving entities, the only economically viable alternative is to perform automatic analyses. Such analyses of security and confidentiality properties have never been achieved on large-scale systems where security properties interact with other software properties, and even the mapping between high-level models of the systems and the large software base implementing them has never been done and represents a great challenge. Our goal is to prove empirically that the security of such large scale systems can be proved formally, thanks to the design of dedicated abstract interpreters.

The long term goal is to make static analysis more widely applicable to the verification of industrial software.