FR

EN

Homepage Inria website
  • Inria login
  • The Inria's Research Teams produce an annual Activity Report presenting their activities and their results of the year. These reports include the team members, the scientific program, the software developed by the team and the new results of the year. The report also describes the grants, contracts and the activities of dissemination and teaching. Finally, the report gives the list of publications of the year.

  • Legal notice
  • Cookie management
  • Personal data
  • Cookies



Section: New Results

Communication-closed asynchronous protocols

Participants : Andrei Damien, Cezara Drăgoi [correspondant] , Alexandru Militaru, Josef Widder.

Fault-tolerant distributed systems are implemented over asynchronous networks, so that they use algorithms for asynchronous models with faults. Due to asynchronous communication and the occurrence of faults (e.g., process crashes or the network dropping messages) the implementations are hard to understand and analyze. In contrast, synchronous computation models simplify design and reasoning. In this paper, we bridge the gap between these two worlds. For a class of asynchronous protocols, we introduce a procedure that, given an asynchronous protocol, soundly computes its round-based synchronous counterpart. This class is defined by properties of the sequential code. We computed the synchronous counterpart of known consensus and leader election protocols, such as, Paxos, and Chandra and Toueg’s consensus. Using Verifast we checked the sequential properties required by the rewriting. We verified the round-based synchronous counter-part of Multi-Paxos, and other algorithms, using existing deductive verification methods for synchronous protocols.