## Section: Research Program

### High order geometric modeling

The accurate description of shapes is a long standing problem in mathematics, with an important impact in many domains, inducing strong interactions between geometry and computation. Developing precise geometric modeling techniques is a critical issue in CAD-CAM. Constructing accurate models, that can be exploited in geometric applications, from digital data produced by cameras, laser scanners, observations or simulations is also a major issue in geometry processing. A main challenge is to construct models that can capture the geometry of complex shapes, using few parameters while being precise.

Our first objective is to develop methods, which are able to describe accurately and in an efficient way, objects or phenomena of geometric nature, using algebraic representations.

The approach followed in CAGD, to describe complex geometry is based on parametric representations called NURBS (Non Uniform Rational B-Spline). The models are constructed by trimming and gluing together high order patches of algebraic surfaces. These models are built from the so-called B-Spline functions that encode a piecewise algebraic function with a prescribed regularity at the seams. Although these models have many advantages and have become the standard for designing nowadays CAD models, they also have important drawbacks. Among them, the difficulty to locally refine a NURBS surface and also the topological rigidity of NURBS patches that imposes to use many such patches with trims for designing complex models, with the consequence of the appearing of cracks at the seams. To overcome these difficulties, an active area of research is to look for new blending functions for the representation of CAD models. Some examples are the so-called T-Splines, LR-Spline blending functions, or hierarchical splines, that have been recently devised in order to perform efficiently local refinement. An important problem is to analyze spline spaces associated to general subdivisions, which is of particular interest in higher order Finite Element Methods. Another challenge in geometric modeling is the efficient representation and/or reconstruction of complex objects, and the description of computational domains in numerical simulation. To construct models that can represent efficiently the geometry of complex shapes, we are interested in developing modeling methods, based on alternative constructions such as skeleton-based representations. The change of representation, in particular between parametric and implicit representations, is of particular interest in geometric computations and in its applications in CAGD.

We also plan to investigate adaptive hierarchical techniques, which can locally improve the approximation of a shape or a function. They shall be exploited to transform digital data produced by cameras, laser scanners, observations or simulations into accurate and structured algebraic models.

The precise and efficient representation of shapes also leads to the problem of extracting and exploiting characteristic properties of shapes such as symmetry, which is very frequent in geometry. Reflecting the symmetry of the intended shape in the representation appears as a natural requirement for visual quality, but also as a possible source of sparsity of the representation. Recognizing, encoding and exploiting symmetry requires new paradigms of representation and further algebraic developments. Algebraic foundations for the exploitation of symmetry in the context of non linear differential and polynomial equations are addressed. The intent is to bring this expertise with symmetry to the geometric models and computations developed by aromath .