Section: Research Program


Electroencephalography (EEG) and Magnetoencephalography (MEG) are two non-invasive techniques for measuring (part of) the electrical activity of the brain. While EEG is an old technique (Hans Berger, a German neuropsychiatrist, measured the first human EEG in 1929), MEG is a rather new one: the first measurements of the magnetic field generated by the electrophysiological activity of the brain were made in 1968 at MIT by D. Cohen. Nowadays, EEG is relatively inexpensive and is routinely used to detect and qualify neural activities (epilepsy detection and characterisation, neural disorder qualification, BCI, ...). MEG is, comparatively, much more expensive as SQUIDS (Superconducting QUantum Interference Device) only operate under very challenging conditions (at liquid helium temperature) and as a specially shielded room must be used to separate the signal of interest from the ambient noise. However, as it reveals a complementary vision to that of EEG and as it is less sensitive to the head structure, it also bears great hopes and an increasing number of MEG machines are being installed throughout the world. Inria and Odyssée /Athena have participated in the acquisition of one such machine installed in the hospital "La Timone" in Marseille.

MEG and EEG can be measured simultaneously (M/EEG) and reveal complementary properties of the electrical fields. The two techniques have temporal resolutions of about the millisecond, which is the typical granularity of the measurable electrical phenomena that arise within the brain. This high temporal resolution makes MEG and EEG attractive for the functional study of the brain. The spatial resolution, on the contrary, is somewhat poor as only a few hundred data points can be acquired simultaneously (about 300-400 for MEG and up to 256 for EEG). MEG and EEG are somewhat complementary with fMRI (Functional MRI) and SPECT (Single-Photon Emission Computed Tomography) in that those provide a very good spatial resolution but a rather poor temporal resolution (of the order of a second for fMRI and a minute for SPECT). Also, contrarily to fMRI, which “only” measures an haemodynamic response linked to the metabolic demand, MEG and EEG measure a direct consequence of the electrical activity of the brain: it is acknowledged that the signals measured by MEG and EEG correspond to the variations of the post-synaptic potentials of the pyramidal cells in the cortex. Pyramidal neurons compose approximately 80% of the neurons of the cortex, and it requires at least about 50,000 active such neurons to generate some measurable signal.

While the few hundred temporal curves obtained using M/EEG have a clear clinical interest, they only provide partial information on the localisation of the sources of the activity (as the measurements are made on or outside of the head). Thus the practical use of M/EEG data raises various problems that are at the core of the Athena research in this topic:

  • First, as acquisition is continuous and is run at a rate up to 1kHz, the amount of data generated by each experiment is huge. Data selection and reduction (finding relevant time blocks or frequency bands) and pre-processing (removing artifacts, enhancing the signal to noise ratio, ...) are largely done manually at present. Making a better and more systematic use of the measurements is an important step to optimally exploit the M/EEG data [1].

  • With a proper model of the head and of the sources of brain electromagnetic activity, it is possible to simulate the electrical propagation and reconstruct sources that can explain the measured signal. Proposing better models  [70][7] and means to calibrate them  [90] so as to have better reconstructions are other important aims of our work.

  • Finally, we wish to exploit the temporal resolution of M/EEG and to apply the various methods we have developed to better understand some aspects of the brain functioning, and/or to extract more subtle information out of the measurements. This is of interest not only as a cognitive goal, but it also serves the purpose of validating our algorithms and can lead to the use of such methods in the field of Brain Computer Interfaces. To be able to conduct such kind of experiments, an EEG lab has been set up at Athena .