## Section: Research Program

### Graph and Combinatorial Algorithms

We focus on two approaches for designing algorithms for large graphs: decomposing the graph and relying on simple graph traversals.

#### Graph Decompositions

We study new decompositions schemes such as 2-join, skew partitions and others partition problems. These graph decompositions appeared in the structural graph theory and are the basis of some well-known theorems such as the Perfect Graph Theorem. For these decompositions there is a lack of efficient algorithms. We aim at designing algorithms working in $O\left(nm\right)$ since we think that this could be a lower bound for these decompositions.

#### Graph Search

We more deeply study multi-sweep graph searches. In this domain a graph search only yields a total ordering of the vertices which can be used by the subsequent graph searches. This technique can be used on huge graphs and do not need extra memory. We already have obtained preliminary results in this direction and many well-known graph algorithms can be put in this framework. The idea behind this approach is that each sweep discovers some structure of the graph. At the end of the process either we have found the underlying structure (for example an interval representation for an interval graph) or an approximation of it (for example in hard discrete optimization problems). We envision applications to exact computations of centers in huge graphs, to underlying combinatorial optimization problems, but also to networks arising in biology.

#### Graph Exploration

In the course of graph exploration, a mobile agent is expected to regularly visit all the nodes of an unknown network, trying to discover all its nodes as quickly as possible. Our research focuses on the design and analysis of agent-based algorithms for exploration-type problems, which operate efficiently in a dynamic network environment, and satisfy imposed constraints on local computational resources, performance, and resilience. Our recent contributions in this area concern the design of fast deterministic algorithms for teams of agents operating in parallel in a graph, with limited or no persistent state information available at nodes. We plan further studies to better understand the impact of memory constraints and of the availability of true randomness on efficiency of the graph exploration process.