EN FR
EN FR


Section: New Software and Platforms

ProximalDenoising

Keywords: 2D - Image filter - Filtering - Minimizing overall energy - Noise - Signal processing - Image reconstruction - Image processing

Scientific Description: Image filtering is contemplated in the form of a sparse minimization problem in a non-convex setting. Given an input image I, one seeks to compute a denoised output image u such that u is close to I in the L2 norm. To do so, a minimization term is added which favors sparse gradients for output image u. Imposing sparse gradients lead to a non-convex minimization term: for instance a pseudo-norm Lp with 0 < p < 1 or a Cauchy or Welsh function. Half-quadratic algorithm is used by adding a new variable in the minimization functionnal which leads to two sub-problems, the first sub-problem is non-convex and solved by use of proximal operators. The second sub-problem can be written in variational form, and is best solved in Fourier space: it takes the form of a deconvolution operator whose kernel can be approximated by a finite sum of separable filters. This solution method produces excellent computation times even on big images.

Functional Description: Use of proximal and non quadratic minimization. GPU implementation.

Release Functional Description: This software implements H. Badri PhD thesis results.