Homepage Inria website
  • Inria login
  • The Inria's Research Teams produce an annual Activity Report presenting their activities and their results of the year. These reports include the team members, the scientific program, the software developed by the team and the new results of the year. The report also describes the grants, contracts and the activities of dissemination and teaching. Finally, the report gives the list of publications of the year.

  • Legal notice
  • Cookie management
  • Personal data
  • Cookies

Section: Research Program

Cyber-Physical co-simulation

The FMI standard (Functional Mock-Up Interface) has been proposed for “purely physical” (i.e., based on persistent signals) co-simulation, and then adopted in over 100 industrial tools including frameworks such as Matlab/Simulink and Ansys, to mention two famous model editors. With the recent use of co-simulation to cyber-physical systems, dealing with the discrete and transient nature of cyber systems became mandatory. Together with other people from the community, we shown that FMI and other frameworks for co-simulation badly support co-simulation of cyber-physical systems; leading to bad accuracy and performances. More precisely, the way to interact with the different parts of the co-simulation require a specific knowledge about its internal semantics and the kind of data exposed (e.g., continuous, piecewise-constant). Towards a better co-simulation of cyber-physical systems, we are looking for conservative abstractions of the parts and formalisms that aim to describe the functional and temporal constraints that are required to bind several simulation models together.