Homepage Inria website
  • Inria login
  • The Inria's Research Teams produce an annual Activity Report presenting their activities and their results of the year. These reports include the team members, the scientific program, the software developed by the team and the new results of the year. The report also describes the grants, contracts and the activities of dissemination and teaching. Finally, the report gives the list of publications of the year.

  • Legal notice
  • Cookie management
  • Personal data
  • Cookies

Section: Partnerships and Cooperations

International Initiatives

Inria Associate Teams Not Involved in an Inria International Labs

  • Title: Cardiac Biomechanical Modeling of Chronic Right Ventricular Loading

  • International Partner (Institution - Laboratory - Researcher):

    • UT Southwestern Medical Center, Dallas,Texas (United States), Mohammad Tarique Hussain

  • Start year: 2018

  • See also:

  • This collaboration aims at addressing a crucial issue in cardiology of congenital heart diseases, namely, the optimal timing of pulmonary valve replacement (PVR) in patients with surgically repaired tetralogy of Fallot (ToF) prone to chronic pulmonary regurgitation or right ventricular outflow tract stenosis. Our strategy consists in exploiting the predictive power of biomechanical modeling to shed light in the decision process. We will start by a detailed proof-of-concept study, based on datasets that will be acquired in patients indicated for percutaneous PVR, prior to the procedure, and in the follow-up at 3- and 12-months post-PVR. These datasets will be first used to calibrate the Inria M3DISIM patient-specific heart model simulating a cardiac cycle (at each follow-up time point) to access the myocardial properties – namely, the active contractility and passive stiffness. The instantaneous tissue properties will be statistically analyzed and compared with the level of reverse remodeling – i.e. the positive outcome of PVR. Secondly, the data at each time point will be used to calibrate and further develop the models of long-term tissue remodeling created by the M3DISIM researchers. It is only by combining such invaluable longitudinal data with biomechanical modeling expertise that progress can be achieved in the above objective, indeed.