Section: Partnerships and Cooperations
National Initiatives
ANR
-
Project acronym: ANR PRCE SoftQPro (ANR-17-CE25-0009)
Project title: Solutions logicielles pour l'optimisation des programmes et ressources quantiques.
Duration: Dec. 2017 - Nov. 2021
Other partners: Atos-Bull, LRI, CEA-Saclay.
Participants: Simon Perdrix, Emmanuel Jeandel, Emmanuel Hainry, and Romain Péchoux
Abstract: Quantum computers can theoretically solve problems out of reach of classical computers. We aim at easing the crucial back and forth interactions between the theoretical approach to quantum computing and the technological efforts made to implement the quantum computer. Our software-based quantum program and resource optimisation (SoftQPRO) project consists in developing high level techniques based on static analysis, certification, transformations of quantum graphical languages, and optimisation techniques to obtain a compilation suite for quantum programming languages. We will target various computational model back-ends (e.g. QRAM, measurement-based quantum computations) as well as classical simulation. Classical simulation is central in the development of the quantum computer, on both ends: as a way to test quantum programs but also as a way to test quantum computer prototypes. For this reason we aim at designing sophisticated simulation techniques on classical high-performance computers (HPC).
-
Project acronym: ANR PRCI VanQuTe ( ANR-17-CE24-0035)
Project title: Validation of near-future quantum technologies.
Duration: Dec. 2017 - Nov. 2021
Other partners: Atos-Bull, LRI, CEA-Saclay.
Participants: Simon Perdrix, Emmanuel Jeandel, Emmanuel Hainry, and Romain Péchoux
Abstract: Quantum computers can theoretically solve problems out of reach of classical computers. We aim at easing the crucial back and forth interactions between the theoretical approach to quantum computing and the technological efforts made to implement the quantum computer. Our software-based quantum program and resource optimisation (SoftQPRO) project consists in developing high level techniques based on static analysis, certification, transformations of quantum graphical languages, and optimisation techniques to obtain a compilation suite for quantum programming languages. We will target various computational model back-ends (e.g. QRAM, measurement-based quantum computations) as well as classical simulation. Classical simulation is central in the development of the quantum computer, on both ends: as a way to test quantum programs but also as a way to test quantum computer prototypes. For this reason we aim at designing sophisticated simulation techniques on classical high-performance computers (HPC).
Autres initiatives
-
Quantex. Project acronym: PIA-GDN/Quantex. (initially an ITEA3 project finally funded by the Grands défis du Numérique / Programme d'investissements d'avenir).
Project title: Simulation/Emulation of Quantum Computation.
Duration: Feb. 2018 - Jan 2021.
Coordinator: Huy-Nam Nguyen (Atos Bull).
Other partners: Atos-Bull, LRI, CEA Grenoble.
Participants: Simon Perdrix (WP leader), Emmanuel Jeandel
Abstract: The lack of quantum computers leads to the development of a variety of software-based simulators to assist in the research and development of quantum algorithms. This proposal focuses on the development of a combined software-based and hardware-accelerated toolbox for quantum computation. A quantum computing stack including specification language, libraries and optimisation/execution tools will be built upon a well-defined mathematical framework mixing classical and quantum computation. Such an environment will be dedicated to support the expression of quantum algorithms for the purpose of investigation and verification.