EN FR
EN FR
Overall Objectives
New Software and Platforms
New Results
Bilateral Contracts and Grants with Industry
Bibliography
Overall Objectives
New Software and Platforms
New Results
Bilateral Contracts and Grants with Industry
Bibliography


Section: New Results

Constant Step Size Stochastic Gradient Descent for Probabilistic Modeling

Stochastic gradient methods enable learning probabilistic models from large amounts of data. While large step-sizes (learning rates) have shown to be best for least-squares (e.g., Gaussian noise) once combined with parameter averaging, these are not leading to convergent algorithms in general. In this paper, we consider generalized linear models, that is, conditional models based on exponential families. In [14], we propose averaging moment parameters instead of natural parameters for constant-step-size stochastic gradient descent. For finite-dimensional models, we show that this can sometimes (and surprisingly) lead to better predictions than the best linear model. For infinite-dimensional models, we show that it always converges to optimal predictions, while averaging natural parameters never does. We illustrate our findings with simulations on synthetic data and classical benchmarks with many observations.