## Section: New Results

### Averaging Stochastic Gradient Descent on Riemannian Manifolds

In [37] we consider the minimization of a function defined on a Riemannian manifold $M$ accessible only through unbiased estimates of its gradients. We develop a geometric framework to transform a sequence of slowly converging iterates generated from stochastic gradient descent (SGD) on $M$ to an averaged iterate sequence with a robust and fast $O(1/n)$ convergence rate. We then present an application of our framework to geodesically-strongly-convex (and possibly Euclidean non-convex) problems. Finally, we demonstrate how these ideas apply to the case of streaming $k$-PCA, where we show how to accelerate the slow rate of the randomized power method (without requiring knowledge of the eigengap) into a robust algorithm achieving the optimal rate of convergence.