Section: New Results

Model calibration and statistical inference

Bayesian calibration

Participants : Maria Belén Heredia, Adrien Hirvoas, Clémentine Prieur.

Physically-based avalanche propagation models must still be locally calibrated to provide robust predictions, e.g. in long-term forecasting and subsequent risk assessment. Friction parameters cannot be measured directly and need to be estimated from observations. Rich and diverse data is now increasingly available from test-sites, but for measurements made along ow propagation, potential autocorrelation should be explicitly accounted for. In the context of María Belén Heredia’s PhD, in collaboration with IRSTEA Grenoble, we have proposed in a comprehensive Bayesian calibration and statistical model selection framework with application to an avalanche sliding block model with the standard Voellmy friction law and high rate photogrammetric images. An avalanche released at the Lautaret test-site and a synthetic data set based on the avalanche were used to test the approach. Results have demonstrated i) the effciency of the proposed calibration scheme, and ii) that including autocorrelation in the statistical modelling definitely improves the accuracy of both parameter estimation and velocity predictions. In the context of the energy transition, wind power generation is developing rapidly in France and worldwide. Research and innovation on wind resource characterisation, turbin control, coupled mechanical modelling of wind systems or technological development of offshore wind turbines floaters are current research topics. In particular, the monitoring and the maintenance of wind turbine is becoming a major issue. Current solutions do not take full advantage of the large amount of data provided by sensors placed on modern wind turbines in production. These data could be advantageously used in order to refine the predictions of production, the life of the structure, the control strategies and the planning of maintenance. In this context, it is interesting to optimally combine production data and numerical models  in order to obtain highly reliable models of wind turbines. This process is of interest to many industrial and academic groups and is known in many fields of the industry, including the wind industry, as "digital twin”. The objective of Adrien Hirvoas's PhD work is to develop of data assimilation methodology to build the "digital twin" of an onshore wind turbine. Based on measurements, the data assimilation should allow to reduce the uncertainties of the physical parameters of the numerical model developed during the design phase to obtain a highly reliable model. Various ensemble data assimilation approches are currently under consideration to address the problem. In the context of this work, it is necessary to develop algorithms of identification quantifying and ranking all the uncertainty sources. This work in done in collaboration with IFPEN.

Non-Parametric statistical inference for Kinetic Diffusions

Participants : Clémentine Prieur, Jose Raphael Leon Ramos.

This research is the subject of a collaboration with Chile and Uruguay. More precisely, we started working with Venezuela. Due to the crisis in Venezuela, our main collaborator on that topic moved to Uruguay.

We are focusing our attention on models derived from the linear Fokker-Planck equation. From a probabilistic viewpoint, these models have received particular attention in recent years, since they are a basic example for hypercoercivity. In fact, even though completely degenerated, these models are hypoelliptic and still verify some properties  of coercivity, in a broad sense of the word. Such models often appear in the fields of mechanics, finance and even biology. For such models we believe it appropriate  to build statistical non-parametric estimation tools. Initial results have been obtained for the estimation of invariant density, in conditions guaranteeing its existence and unicity [39] and when only partial observational data are available. A paper on the non parametric estimation of the drift has been accepted recently [40] (see Samson et al., 2012, for results for parametric models). As far as the estimation of the diffusion term is concerned, a paper has been accepted [40], in collaboration with J.R. Leon (Montevideo, Uruguay) and P. Cattiaux (Toulouse). Recursive estimators have been also proposed by the same authors in [41], also recently accepted. In a recent collaboration with Adeline Samson from the statistics department in the Lab, we considered adaptive estimation, that is we proposed a data-driven procedure for the choice of the bandwidth parameters.

In [42], we focused on damping Hamiltonian systems under the so-called fluctuation-dissipation condition. Idea in that paper were re-used with applications to neuroscience in [52].

Note that Professor Jose R. Leon (Caracas, Venezuela, Montevideo, Uruguay) was funded by an international Inria Chair, allowing to collaborate further on parameter estimation.

We recently proposed a paper on the use of the Euler scheme for inference purposes, considering reflected diffusions. This paper could be extended to the hypoelliptic framework.

We also have a collaboration with Karine Bertin (Valparaiso, Chile), Nicolas Klutchnikoff (Université Rennes) and Jose R. León (Montevideo, Uruguay) funded by a MATHAMSUD project (2016-2017) and by the LIA/CNRS (2018). We are interested in new adaptive estimators for invariant densities on bounded domains [38], and would like to extend that results to hypo-elliptic diffusions.