Section: Research Program
Algebraic computing and high performance kernels
The connections between algorithms for structured matrices and for polynomial matrices will continue to be developed, since they have proved to bring progress to fundamental questions with applications throughout computer algebra. The new fast algorithm for the bivariate resultant opens an exciting area of research which should produce improvements to a variety of questions related to polynomial elimination. Obviously, we expect to produce results in that area.
For definite summation and integration, we now have fast algorithms for single integrals of general functions and sequences and for multiple integrals of rational functions. The long-term objective of that part of computer algebra is an efficient and general algorithm for multiple definite integration and summation of general functions and sequences. This is the direction we will take, starting with single definite sums of general functions and sequences (leading in particular to a faster variant of Zeilberger's algorithm). We also plan to investigate geometric issues related to the presence of apparent singularities and how they seem to play a role in the complexity of the current algorithms.