EN FR
EN FR


Section: Research Program

Research axis 3: Computational systems biology of neurons and astrocytes

Brain cells are rarely considered by computational systems biologists, though they are especially well suited for the field: their major signaling pathways are well characterized, the cellular properties they support are well identified (e.g. synaptic plasticity) and eventually give rise to well known functions at the organ scale (learning, memory). Moreover, electro-physiology measurements provide us with an experimental monitoring of signaling at the single cell level (sometimes at the sub-cellular scale) with unrivaled temporal resolution (milliseconds) over durations up to an hour. In this research axis, we develop modeling approaches for systems biology of both neuronal cells and glial cells, in particular astrocytes. We are mostly interested in understanding how the pathways implicated in the signaling between neurons, astrocytes and neurons-astrocytes interactions implement and regulate synaptic plasticity.