Section: Research Program

Synthesis of reduced complexity controllers

  • PID controllers

    Even though the synthesis of control laws of a given complexity is not a new problem, it is still open, even for finite-dimensional linear systems. Our purpose is to search for good families of “simple” (e.g. low order) controllers for infinite-dimensional dynamical systems. Within our approach, PID candidates are first considered in the team [2], [60].

    For interconnected systems appearing in teleoperation applications, such as the steer-by-wire, Proportional-Derivative laws are simple control strategies allowing to reproduce the efforts in both ends of the teleoperation system. However, due to delays introduced in the communication channels these strategies may result in loss of closed loop stability or in performance degradation when compared to the system with a mechanical link (no communication channel). In this context we search for non-linear proportional and derivative gains to improve performance. This is assessed in terms of reduction of overshoot and guaranteed convergence rates.

  • Delayed feedback

    Control systems often operate in the presence of delays, primarily due to the time it takes to acquire the information needed for decision-making, to create control decisions and to execute these decisions. Commonly, such a time delay induces desynchronizing and/or destabilizing effects on the dynamics. However, some recent studies have emphasized that the delay may have a stabilizing effect in the control design. In particular, the closed-loop stability may be guaranteed precisely by the existence of the delay. The interest of considering such control laws lies in the simplicity of the controller as well as in its easy practical implementation. It is intended by the team members to provide a unified approach for the design of such stabilizing control laws for finite and infinite dimensional plants [3], [8].

  • Finite Time and Interval Observers for nonlinear systems

    We aim to develop techniques of construction of output feedbacks relying on the design of observers. The objectives pertain to the design of robust control laws which converge in finite time, the construction of intervals observers which ensure that the solutions belong to guaranteed intervals, continuous/discrete observers for systems with discrete measurements and observers for systems with switches.

Finally, the development of algorithms based on both symbolic computation and numerical methods, and their implementations in dedicated Scilab/Matlab/Maple toolboxes are important issues in the project.