Section: Research Program

Analysis of interconnected systems

The major questions considered are those of the characterization of the stability (also including the problems of sensitivity compared to the variations of the parameters) and the determination of stabilizing controllers of interconnected dynamic systems. In many situations, the dynamics of the interconnections can be naturally modelled by systems with delays (constant, distributed or time-varying delays) possibly of fractional order. In other cases, partial differential equations (PDE) models can be better represented or approximated by using systems with delays. Our expertise on this subject, on both time and frequency domain methods, allows us to challenge difficult problems (e.g. systems with an infinite number of unstable poles).

  • Robust stability of linear systems

    Within an interconnection context, lots of phenomena are modelled directly or after an approximation by delay systems. These systems may have constant delays, time-varying delays, distributed delays ...

    For various infinite-dimensional systems, particularly delay and fractional systems, input-output and time-domain methods are jointly developed in the team to characterize stability. This research is developed at four levels: analytic approaches (H-stability, BIBO-stablity, robust stability, robustness metrics) [1], [2], [6], [7], symbolic computation approaches (SOS methods are used for determining easy-to-check conditions which guarantee that the poles of a given linear system are not in the closed right half-plane, certified CAD techniques), numerical approaches (root-loci, continuation methods) and by means of softwares developed in the team [6], [7].

  • Robustness/fragility of biological systems

    Deterministic biological models describing, for instance, species interactions, are frequently composed of equations with important disturbances and poorly known parameters. To evaluate the impact of the uncertainties, we use the techniques of designing of global strict Lyapunov functions or functional developed in the team.

    However, for other biological systems, the notion of robustness may be different and this question is still in its infancy (see, e.g. [57]). Unlike engineering problems where a major issue is to maintain stability in the presence of disturbances, a main issue here is to maintain the system response in the presence of disturbances. For instance, a biological network is required to keep its functioning in case of a failure of one of the nodes in the network. The team, which has a strong expertise in robustness for engineering problems, aims at contributing at the develpment of new robustness metrics in this biological context.