Section: Research Program
Discrete geometric structures
Our work on discrete geometric structures develops in several directions, each one probing a different type of structure. Although these objects appear unrelated at first sight, they can be tackled by the same set of probabilistic and topological tools.
A first research topic is the study of Order types. Order types
are combinatorial encodings of finite (planar) point sets, recording
for each triple of points the orientation (clockwise or
counterclockwise) of the triangle they form. This already determines
properties such as convex hulls or half-space depths, and the
behaviour of algorithms based on orientation predicates. These
properties for all (infinitely many)
A second research topic is the study of Embedded graphs and simplicial complexes. Many topological structures can be effectively discretized, for instance combinatorial maps record homotopy classes of embedded graphs and simplicial complexes represent a large class of topological spaces. This raises many structural and algorithmic questions on these discrete structures; for example, given a closed walk in an embedded graph, can we find a cycle of the graph homotopic to that walk? (The complexity status of that problem is unknown.) Going in the other direction, some purely discrete structures can be given an associated topological space that reveals some of their properties (e.g. the Nerve theorem for intersection patterns). An open problem is for instance to obtain fractional Helly theorems for set system of bounded topological complexity.
Another research topic is that of Sparse inclusion-exclusion formulas.
For any family of sets
where