EN FR
EN FR


Section: New Results

Unstructured anisotropic mesh adaptation for 3D RANS turbomachinery applications

Participants : Frédéric Alauzet, Loïc Frazza, Adrien Loseille [correspondant] , Julien Vanharen.

The scope of this paper is to demonstrate the viability and efficiency of unstructured anisotropic mesh adaptation techniques to turbomachinery applications. The main difficulty in turbomachinery is the periodicity of the domain that must be taken into account inthe solution mesh-adaptive process. The periodicity is strongly enforced in the flow solver using ghost cells to minimize the impact on the source code. For the mesh adaptation, the local remeshing is done in two steps. First, the inner domain is remeshed with frozen periodic frontiers, and, second, the periodic surfaces are remeshed after moving geometrice ntities from one side of the domain to the other. One of the main goal of this work is to demonstrate how mesh adaptation, thanks to its automation, is able to generate meshes that are extremely difficult to envision and almost impossible to generate manually. This study only considers feature-based error estimate based on the standard multi-scale Lpinterpolation error estimate. We presents all the specific modifications that have been introduced in the adaptive process to deal with periodic simulations used for turbomachinery applications. The periodic mesh adaptation strategy is then tested and validated on the LS89 high pressure axial turbine vane and the NASA Rotor 37 test cases.