Section: New Results
Statistically Significant Discriminative Patterns Searching
In [18], we propose a novel algorithm, named SSDPS, to discover patterns in two-class datasets. The SSDPS algorithm owes its efficiency to an original enumeration strategy of the patterns, which allows to exploit some degrees of anti-monotonicity on the measures of discriminance and statistical significance. Experimental results demonstrate that the performance of the SSDPS algorithm is better than others. In addition, the number of generated patterns is much less than the number of the other algorithms. Experiment on real data also shows that SSDPS effciently detects multiple SNPs combinations in genetic data.