Section: Research Program
Time asymptotics: Stationary states, solitons, and stability issues
The team investigates the existence of solitons and their link with the global dynamical behavior for nonlocal problems such as that of the Gross–Pitaevskii (GP) equation which arises in models of dipolar gases. These models, in general, also introduce nonzero boundary conditions which constitute an additional theoretical and numerical challenge. Numerous results are proved for local problems, and numerical simulations allow to verify and illustrate them, as well as making a link with physics. However, most fundamental questions are still open at the moment for nonlocal problems.
The nonlinear Schrödinger (NLS) equation finds applications in numerous fields of physics. We concentrate, in a continued collaboration with our colleagues from the physics department (PhLAM) of the Université de Lille (UdL), in the framework of the Laboratoire d’Excellence CEMPI, on its applications in nonlinear optics and cold atom physics. Issues of orbital stability and modulational instability are central here.
Another typical example of problems that the team wishes to address
concerns the Landau–Lifshitz (LL) equation,
which describes the dynamics of the spin
in ferromagnetic materials.
This equation is a fundamental model in the magnetic recording industry
[37] and solitons in magnetic media are of particular interest
as a mechanism for data storage or information transfer [38].
It is a quasilinear PDE involving a function that takes values on the unit
sphere