Section: Research Program

Transportation networks

This is currently the main application domain of the NeCS team. Several interesting problems in this area capture many of the generic networks problems identified before (e.g., decentralized/collaborative traffic optimal control, density balancing using consensus concepts, data fusion, distributed estimation, etc.). Several specific actions have been continued/launched to this purpose: improvement and finalization of the Grenoble Traffic Lab (GTL), EU projects (SPEEDD, ERC-AdG Scale-FreeBack). Further research goals are envisioned, such as:

  • Modeling of large scale traffic systems. We aim at reducing the complexity of traffic systems modeling by engaging novel modeling techniques that make use of clustering for traffic networks while relying on its specific characteristics. Traffic networks will be aggregate into clusters and the main traffic quantities will be extrapolated by making use of this aggregation. Moreover, we are developing an extension of the Grenoble Traffic Lab (GTL) for downtown Grenoble which will make use of GPS and probe data to collect traffic data in the city center.

  • Modeling and control of intelligent transportation systems. We aim at developing a complete micro-macro modeling approach to describe and model the new traffic dynamics that is developing thanks to mixed (simple, connected and automated) vehicles in the roads. This will require cutting edge mathematical theory and field experiments.