Section: Research Program
New domains
In order to consider more and more challenging problems (involving non-deterministic, large-scale and more realistic models), we decided recently to enlarge our domain of expertise in three directions.
Firstly, we want to reinforce our activity on efficient solvers for large-scale wave propagation problems. Since its inception, POEMS has frequently contributed to the development and the analysis of numerical methods that permit the fast solution of large-scale problems, such as high-order finite element methods, boundary elements methods and domain decomposition methods. Nevertheless, implementing these methods in parallel programming environments and dealing with large-scale benchmarks have generally not been done by the team. We want to continue our activities on these methods and, in a more comprehensive approach, we will incorporate modern algebraic strategies and high-performance computing (HPC) aspects in our methodology. In collaboration with academic or industrial partners, we would like to address industrial-scale benchmarks to assess the performance of our approaches. We believe that taking all these aspects into consideration will allow us to design more efficient wave-specific computational tools for large-scale simulations.
Secondly, up to now, probabilistic methods were outside the expertise of POEMS team, restricting us to deterministic approaches for wave propagation problems. We however firmly believe in the importance and usefulness of addressing uncertainty and randomness inherent to many propagation phenomena. Randomness may occur in the description of complex propagation media (for example in the modeling of ultrasound waves in concrete for the simulation of non-destructive testing experiments) or of data uncertainties. To quantify the effect of such uncertainties on the design, behavior, performance or reliability of many systems is then a natural goal in diverse fields of application.
Thirdly and lastly, we wish to develop and strengthen collaborations allowing a closer interaction between our mathematical, modeling and computing activities and physical experiments, where the latter may either provide reality checks on existing models or strongly affect the choice of modeling assumptions. Within our typical domain of activities, we can mention three areas for which such considerations are highly relevant. One is musical acoustics, where POEMS has made several well-recognized contributions dealing with the simulation of musical instruments. Another area is inverse problems, whose very purpose is to extract useful information from actual measurements with the help of (propagation) models. This is a core of our partnership with CEA on ultrasonic Non Destructive Testing. A third area is the modelling of effective (acoustic or electromagnetic) metamaterials, where predictions based on homogenized models have to be confirmed by experiments.