EN FR
EN FR


Section: Research Program

Robust Optimization

Decision makers are usually facing several sources of uncertainty, such as the variability in time or estimation errors. A simplistic way to handle these uncertainties is to overestimate the unknown parameters. However, this results in over-conservatism and a significant waste in resource consumption. A better approach is to account for the uncertainty directly into the decision aid model by considering mixed integer programs that involve uncertain parameters. Stochastic optimization account for the expected realization of random data and optimize an expected value representing the average situation. Robust optimization on the other hand entails protecting against the worst-case behavior of unknown data. There is an analogy to game theory where one considers an oblivious adversary choosing the realization that harms the solution the most. A full worst case protection against uncertainty is too conservative and induces very high over-cost. Instead, the realization of random data are bound to belong to a restricted feasibility set, the so-called uncertainty set. Stochastic and robust optimization rely on very large scale programs where probabilistic scenarios are enumerated. There is hope of a tractable solution for realistic size problems, provided one develops very efficient ad-hoc algorithms. The techniques for dynamically handling variables and constraints (column-and-row generation and Bender's projection tools) that are at the core of our team methodological work are specially well-suited to this context.