EN FR
EN FR


Section: Research Program

Analytics

A large volume of data is processed as part of the operations and management of networked systems. These include traditional monitoring data generated by network components and components' configuration data, but also data generated by dedicated network and system probes.

Understanding and predicting security incidents or system ability to scale requires the elaboration of novel data analytics techniques capable to cope with large volumes of data generated from various sources, in various formats, possibly incomplete, non-fully described or even encrypted.

We use machine learning techniques (e.g. Topological Data Analysis or multilayer perceptrons) and leverage our domain knowledge to fine-tune them. For instance, machine learning on network data requires the definition of new distance metrics capable to capture the properties of network configurations, packets and flows similarly to edge detection in image processing. Resist contributes to developing and making publicly available an analytics framework dedicated to networked systems to support Intelligence-Defined Networked Systems.

Specifically, the goal of the Resist analytics framework is to facilitate the extraction of knowledge useful for detecting, classifying or predicting security or scalability issues. The extracted knowledge is then leveraged for orchestration purposes to achieve system elasticity and guarantee its resilience. Indeed, predicting when, where and how issues will occur is very helpful in deciding the provisioning of resources at the right time and place. Resource provisioning can be done either reactively to solve the issues or proactively to prepare the networked system for absorbing the incident (resiliency) in a timely manner thanks to its elasticity.

While the current trend is towards centralization where the collected data is exported to the cloud for processing, we seek to extend this model by also developing and evaluating novel approaches in which data analytics is seamlessly embedded within the monitored systems. This combination of big data analytics with network softwarization enablers (SDN, NFV) can enhance the scalability of the monitoring and analytics infrastructure.