Section: Application Domains
Applications of sparse direct solvers
Sparse direct (e.g., multifrontal solvers that we develop) solvers have a wide range of applications as they are used at the heart of many numerical methods in computational science: whether a model uses finite elements or finite differences, or requires the optimization of a complex linear or nonlinear function, one often ends up solving a system of linear equations involving sparse matrices. There are therefore a number of application fields, among which some of the ones cited by the users of the sparse direct solver Mumps are: structural mechanics, seismic modeling, biomechanics, medical image processing, tomography, geophysics, electromagnetism, fluid dynamics, econometric models, oil reservoir simulation, magneto-hydro-dynamics, chemistry, acoustics, glaciology, astrophysics, circuit simulation, and work on hybrid direct-iterative methods.